欢迎访问《林产化学与工业》,

林产化学与工业 ›› 2017, Vol. 37 ›› Issue (6): 65-72.doi: 10.3969/j.issn.0253-2417.2017.06.009

• 研究报告 • 上一篇    下一篇

缅甸大果紫檀精油的化学成分及其抑菌活性研究

陈虹霞1, 康秀棠2, 尤龙杰2, 王成章1,3, 叶建中1   

  1. 1. 中国林业科学研究院 林产化学工业研究所;生物质化学利用国家工程实验室;国家林业局 林产化学工程重点开放性实验室;江苏省生物质能源与材料重点实验室, 江苏 南京 210042;
    2. 福建省香产品质量检验中心, 福建 泉州 362600;
    3. 中国林业科学研究院 林业新技术研究所, 北京 100091
  • 收稿日期:2017-04-11 出版日期:2017-12-25 发布日期:2018-01-05
  • 通讯作者: 王成章(1966-),研究员,博士,博士生导师,主要从事天然产物研究与利用方面的工作;E-mail:wangczlhs@sina.com E-mail:wangczlhs@sina.com
  • 作者简介:陈虹霞(1983-),女,浙江舟山人,助理研究员,博士,从事天然产物化学方面的研究;E-mail:shirenyahui@126.com
  • 基金资助:
    国家国际科技合作专项(2014DFR31300)

Chemical Component and Antibacterial Activity of Essential Oil from Myanmar Pterocarpus macrocarpus

CHEN Hongxia1, KANG Xiutang2, YOU Longjie2, WANG Chengzhang1,3, YE Jianzhong1   

  1. 1. Institute of Chemical Industry of Forestry Products, CAF;National Engineering Lab. for Biomass Chemical Utilization;Key and Open Lab. of Forest Chemical Engineering, SFA;Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China;
    2. Fujian Quality Inspection Center of Incense Products, Quanzhou 362600, China;
    3. Research Institute of Forestry New Technology, CAF, Beijing 100091, China
  • Received:2017-04-11 Online:2017-12-25 Published:2018-01-05

摘要: 采用水蒸气蒸馏(SD)、溶剂热浸提(STE)和亚临界流体萃取(SFE)3种方式提取缅甸大果紫檀精油,并通过GC-MS对3种精油的化学成分进行分析。结果表明:亚临界流体萃取的得率最高(1.95%),水蒸气蒸馏的得率最低(1.03%),溶剂热浸提的精油得率为1.74%。通过GC-MS分析,从水蒸气蒸馏紫檀精油中共检测出38种化合物,主要为β-桉叶醇(69.897%)和桢楠醇(18.055%);溶剂热浸提紫檀精油中检测出48种化合物,主要为β-桉叶醇(50.907%)、后莫紫檀素(13.322%)、桢楠醇(9.333%)、对叔丁基苯甲醚(2.481%)和匙桉醇(2.285%);亚临界流体萃取紫檀精油中检测出48种化合物,主要为β-桉叶醇(47.786%)、后莫紫檀素(13.516%)、二甲基-2,3-二氰-2-丁烯二酸(5.429%)、桢楠醇(5.232%)、对叔丁基苯甲醚(2.699%)和匙桉醇(2.636%)。采用抑菌圏法、最小抑菌浓度(MIC)及最低杀菌浓度(MBC)法比较了3种精油的抑菌作用,发现水蒸气蒸馏精油对肺炎克雷伯氏菌、白色念珠菌和枯草芽孢杆菌没有抑制作用,而亚临界流体萃取精油对这3种菌有较好的抑菌效果,其MIC值分别为6.25、25和6.25 g/L。

关键词: 大果紫檀, 精油, 水蒸气蒸馏, 亚临界流体萃取, 抑菌活性

Abstract: The essential oils of Myanmar Pterocarpus macrocarpus Kurz were obtained by using steam distillation(SD), solvent thermal extraction(STE) and subcritical fluid extraction(SFE), with the comparative analysis of the chemical composition of three methods. The results showed that SFE exhibited the highest essential oil yield of 1.95%, SD exhibited the lowest essential oil yield of 1.03%, the yield of STE was 1.74%. About 38 constituents of the essential oil obtained by SD were identified by GC-MS analysis with the main compounds of β-eudesmol(69.897%) and machilol(18.055%). About 48 constituents of the essential oil obtained by STE were identified with the main compounds of β-eudesmol(50.907%), homopterocarpin(13.322%), machilol(9.333%), 1-(1,1-dimethylethyl)-4-methoxy-benzene(2.481%) and espatulenol(2.285%). About 48 constituents of the essential oil obtained by SFE were identified with the main compounds of β-eudesmol(47.786%), homopterocarpin(13.516%), dimethyl 2,3-dicyano-2-butenedioate(5.429%), machilol(5.232%), 1-(1,1-dimethylethyl)-4-methoxy-benzene(2.699%) and espatulenol(2.636%). The antimicrobial activity of the essential oils obtained by threee extraction methods were tested by zone of inhibition test, MIC and MBC assays. The essential oil obtained by SD showed no antimicrobial activity against Klebsiella pneumoniae, Candida albicans and Bacillus subtilis. However, it showed higher antimicrobial activity with the MIC values against the Klebsiella pneumoniae, Candida albicans and Bacillus subtilis of 6.25, 25 and 6.25 g/L, respectively.

Key words: Pterocarpus macrocarpus Kurz, essential oil, steam distillation, subcritical fluid extraction, antibacterial activity

中图分类号: