欢迎访问《林产化学与工业》,

林产化学与工业 ›› 2020, Vol. 40 ›› Issue (3): 39-44.doi: 10.3969/j.issn.0253-2417.2020.03.005

• 研究报告 • 上一篇    下一篇

活性炭孔隙结构对炭基金属氧化物催化剂HCN防护性能的影响

孙昊1,2,3,赵大力4,金彦任4,刘艳艳1,蒋剑春1,2,*(),邢浩洋4   

  1. 1. 中国林业科学研究院 林产化学工业研究所; 生物质化学利用国家工程实验室; 国家林业和草原局林产化学工程重点实验室; 江苏省生物质能源与材料重点实验室, 江苏 南京 210042
    2. 南京林业大学 江苏省林业资源高效加工利用协同创新中心, 江苏 南京 210037
    3. 中国林业科学研究院 林业新技术研究所, 北京 100091
    4. 山西新华化工有限责任公司, 山西 太原 030008
  • 收稿日期:2019-12-31 出版日期:2020-06-28 发布日期:2020-06-29
  • 通讯作者: 蒋剑春 E-mail:bio-energy@163.com
  • 作者简介:孙昊(1989-),男,江苏盐城人,助理研究员,博士,主要从事炭基催化材料的研究工作
  • 基金资助:
    江苏省生物质能源与材料重点实验室基本科研业务费项目(JSBEM-S-201910)

Effect of Pore Structure on HCN Defence Performance of Activatied Carbon Supported Metallic Oxide Catalyst

Hao SUN1,2,3,Dali ZHAO4,Yanren JIN4,Yanyan LIU1,Jianchun JIANG1,2,*(),Haoyang XING4   

  1. 1. Institute of Chemical Industry of Forest Products, CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
    2. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
    3. Research Institute of Forestry New Technology, CAF, Beijing 100091, China
    4. Shanxi Xinhua Chemical Co., Ltd., Taiyuan 030008, China
  • Received:2019-12-31 Online:2020-06-28 Published:2020-06-29
  • Contact: Jianchun JIANG E-mail:bio-energy@163.com

摘要:

选取不同的煤质活性炭作为载体,以铜氨配离子等作为金属前驱体,采用等体积浸渍法制备炭基金属氧化物催化剂,通过氮气吸附-脱附、扫描电镜、X射线能谱、透射电镜等对活性炭负载金属位点前后的孔结构、金属分布和形貌进行了分析,并测试了炭基金属氧化物催化剂对HCN的防护时间,进而探明活性炭载体的孔隙结构对炭基催化剂的HCN防护性能的作用机制。研究结果表明:活性炭有效吸附铜氨配离子的可几孔径为1.2~2.1 nm,有利于铜氨配离子向孔道内部吸附渗透,产生分散的Cu2O活性位点,提高催化剂的HCN防护时间;而直径>2.1 nm的介孔道则会导致纳米金属颗粒在孔道内的严重团聚,降低金属的分散性,从而减弱催化剂的HCN防护性能。当活性炭1.2~2.1 nm的孔容积大于0.142 4 cm3/g、>2.1 nm的孔容积小于0.082 4 cm3/g,制得的炭基金属氧化物的HCN防护时间超过30 min。

关键词: 炭基金属氧化物, HCN防护, 孔径分布, 纳米颗粒

Abstract:

A series of coal activated carbon supported metallic oxide were preparedby incipient-wetness impregnation method with cuprammonium complex and so on.The pore structure, metal distribution and morphology of activated carbon before and after loading of metal sites were analyzed by N2 adsorption-desorption, scanning electron microscope, energy dispersive spectroscopy and transmission electron microscope.The HCN defence time of carbon catalyst was also tested. Hence, the effect of pore size distribution of activated carbon supportor on the HCN defence performance of catalyst was demonstrated.The effective pore size distribution of activated carbon for adsorbing cuprammonium complex was 1.2-2.1 nm, which facilitated the penetration of cuprammonium complex inside the carbon supportor and formation of the active sites for dispersing Cu2O and enhancement of HCN defence time. However, the mesopores(>2.1 nm) of carbon supportor would result in the severe accumulation of the active particles, reduction of metal dispersion and thus decreasing the HCN defence performance of carbon catalysts.The HCN defence time of activated carbon supported catalyst was longer than 30 min, as the pore volume of activated carbon with the pore size of 1.2-2.1 nm was over 0.142 4 cm3/g and the pore volume with the pore size of >2.1 nm was less than 0.082 4 cm3/g.

Key words: activated carbon supported metallic oxide, defence of HCN, pore size distribution, nanoparticles

中图分类号: