欢迎访问《林产化学与工业》,

林产化学与工业 ›› 2021, Vol. 41 ›› Issue (3): 55-62.doi: 10.3969/j.issn.0253-2417.2021.03.008

• 研究报告 • 上一篇    下一篇

大豆蛋白水凝胶电解质的制备及在固态超级电容器中的应用

张盖同1,2, 宋晓丽3, 南静娅1, 汪宏生1, 储富祥1, 王春鹏1,*()   

  1. 1. 中国林业科学研究院 林产化学工业研究所; 生物质化学利用国家工程实验室; 国家林业和草原局林产化学工程重点实验室; 江苏省生物质能源与材料重点实验室, 江苏 南京 210042
    2. 南京林业大学 江苏省林业资源高效加工利用协同创新中心, 江苏 南京 210037
    3. 山东省临沂市生态环境局兰陵县分局, 山东 临沂 276000
  • 收稿日期:2020-09-15 出版日期:2021-06-28 发布日期:2021-07-01
  • 通讯作者: 王春鹏 E-mail:wangcpg@163.com
  • 作者简介:王春鹏, 研究员, 博士生导师, 主要从事生物基高分子材料及胶黏剂的研究; E-mail: wangcpg@163.com
    张盖同(1996-), 男, 山东济宁人, 硕士生, 主要从事生物基功能材料的研究工作
  • 基金资助:
    国家重点研发计划国际合作专项(2017YFE0106800)

Preparation of Soy Protein Hydrogel Electrolyte and Its Application in Solid-state Supercapacitors

Gaitong ZHANG1,2, Xiaoli SONG3, Jingya NAN1, Hongsheng WANG1, Fuxiang CHU1, Chunpeng WANG1,*()   

  1. 1. Institute of Chemical Industry of Forest Products, CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
    2. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
    3. Lanling County Branch of Linyi Ecological Environment Bureau, Linyi 276000, China
  • Received:2020-09-15 Online:2021-06-28 Published:2021-07-01
  • Contact: Chunpeng WANG E-mail:wangcpg@163.com

摘要:

以大豆蛋白(SPI)和丙烯酰胺(AAm)为原料,过硫酸铵(APS)为引发剂,N,N'-亚甲基双丙烯酰胺(MBAA)为交联剂,氯化锂为电解质盐,N,N,N,N'-四亚甲基乙二胺(TEMED)为促进剂制备得到大豆蛋白水凝胶电解质,探究了其力学性能以及组装成超级电容器后的电化学性能。研究结果表明:制得的大豆蛋白水凝胶电解质具有优异的弹性以及耐疲劳性能,这是由于SPI纳米颗粒通过塑性变形及相互摩擦耗散外力,聚丙烯酰胺网络维持结构完整。在经历80%的压缩应变循环100次后,应力保持率始终在100%以上,塑性变形率低于7%,能量损耗系数小于0.2。另外,该水凝胶电解质具有较高的离子电导率,可与聚吡咯/碳纳米管(PPy/CNTs)纸复合电极组装成固态超级电容器。当水凝胶电解质的含水率由60%增加到90%,经GCD方法计算得到固态超级电容器的比电容由58 F/g增加到83 F/g;在1.2 A/g的电流密度下,固态超级电容器的能量密度为3.95~6.86 W·h/kg,功率密度为206.69~226.99 W/kg,与已报道的超级电容器的能量密度和功率密度进行比较,均表现出高能量密度和高功率密度优势,为水凝胶电解质在柔性可压缩储能器件上的应用提供了有效的途径和方法。

关键词: 大豆蛋白, 水凝胶电解质, 超级电容器, 耐疲劳强度

Abstract:

A soy protein hydrogel electrolyte for lithium ion-conducting was synthesized with using soybean protein isolate(SPI) and acrylamide(AAm) as raw materials, ammonium persulfate(APS) as initiator, N, N'-methylenebisacrylamide(MBAA) as covalent crosslinker, lithium chloride as electrolyte, and N, N, N, N'-tetramethylene ethylenedia mine(TEMED) as accelerator. The mechanical properties of the hydrogel electrolyte and the electrochemical properties of the solid-state supercapacitor prepared from this hydrogel electrolyte were investigated. The results showed that the hydrogel electrolyte had excellent elasticity and fatigue resistance, because the sliding friction and plastic deformation of soybean protein nanoparticles could effectively disperse the applied stress and dissipate energy, and the polyacrylamide network could maintain the shape. The stress retention rate of hydrogel electrolyte maintained over 100% after experiencing 80% compressive-strain for 100 compression cycles. The plastic deformation was less than 7% and the energy loss coefficient was less than 0.2. In addition, the hydrogel electrolyte had high ionic conductivity, and it could be assembled with polypyrrole/carbon nanotube(PPy/CNTs) paper composite electrode to form a solid supercapacitor. When the water content of the hydrogel electrolyte increased from 60% to 90%, the specific capacitance of the device which was calculated by GCD method increased from 38 F/g to 107 F/g; at the current density of 1.2 A/g, the energy densities of supercapacitors were 3.95-6.86 W·h/kg, the power densities were 206.69-226.99 W/kg. Compared with the reported energy density and power density of supercapacitors, the results showed that the device had the advantages of high energy density and high power density, which provided an effective way and method for the application of hydrogel electrolyte in flexible compressible energy storage devices.

Key words: soybean protein, hydrogel electrolyte, supercapacitor, fatigue resistance

中图分类号: