欢迎访问《林产化学与工业》,

林产化学与工业 ›› 2021, Vol. 41 ›› Issue (6): 19-26.doi: 10.3969/j.issn.0253-2417.2021.06.003

• 重点研发专栏 • 上一篇    下一篇

木质素制备燃料电池阴极电催化炭材料研究(Ⅲ)——改性酶解木质素炭的微观结构演变

左宋林1(), 金凯楠1, 桂有才1, 申保收2,3, 王珊珊1, 杨梦梅1   

  1. 1. 南京林业大学 化学工程学院, 江苏 南京 210037
    2. 陕西省地表系统与环境承载力重点实验室, 陕西 西安 710127
    3. 西北大学 城市与环境学院/地表系统与灾害研究院, 陕西 西安 710127
  • 收稿日期:2021-07-14 出版日期:2021-12-28 发布日期:2021-12-31
  • 作者简介:左宋林(1968-), 男, 湖南湘潭人, 教授, 博士生导师, 研究领域为生物质热化学转化与炭材料; E-mail: zslnl@njfu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2019YFB1503804);江苏省自然科学基金青年项目(BK20170928)

Studies on Lignin-based Carbon Materials as Electrocatalysts of Fuel Cells Cathode Ⅲ: Microstructure Evolution of Lignin Derived Chars

Songlin ZUO1(), Kainan JIN1, Youcai GUI1, Baoshou SHEN2,3, Shanshan WANG1, Mengmei YANG1   

  1. 1. College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
    2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an 710127, China
    3. College of Urban and Environmental Sciences/Institute of Earth Surface System and Hazards, Northwest University, Xi'an 710127, China
  • Received:2021-07-14 Online:2021-12-28 Published:2021-12-31

摘要:

为了研究木质素基炭微观结构演变规律,以阔叶材酶解木质素及其尿素改性和三聚氰胺改性木质素为原料,在300~900 ℃之间炭化制备木质素基炭。采用X射线衍射、氮气吸附/脱附等温线、电阻率测试和扫描电镜分析了木质素基炭的微观结构、导电性和孔隙结构,全面分析了改性处理对木质素基炭的微观结构和孔隙结构演变过程的影响。研究结果表明:不管木质素是否改性,当炭化温度从600 ℃升高到700 ℃时,木质素基炭的导电性急剧提高,并从绝缘体转变为半导体,木质素基炭的类石墨微晶结构快速发展。然而,尿素和三聚氰胺改性导致类石墨微晶中碳网平面层间距的缩小,且氮含量越高的三聚氰胺改性变化更加明显;同时可以明显提高炭化温度低于700 ℃时炭化得到的木质素基炭的导电性,并降低炭化温度高于700 ℃时炭化得到的炭的导电性。非常突出的是,尿素和三聚氰胺改性显著阻碍了木质素基炭孔隙结构的发展,甚至完全抑制了微孔的形成。在700 ℃下制得的未改性、尿素改性和三聚氰胺改性木质素基炭的比表面积分别为524、102和69 m2/g。

关键词: 木质素, 炭材料, 电催化, 尿素, 三聚氰胺, 微观结构

Abstract:

Three series of lignin-based chars were prepared from three raw materials, hardwood enzymatic hydrolysis lignin and their urea-modified and melamine-modified counterparts, through carbonization in the temperature range of 300-900 ℃ in order to elucidate the microstructure evolution of lignin chars. X-ray diffraction, nitrogen adsorption, electric resistivity analysis and scanning electron microscope were employed to characterize the graphite-like microcrystallite structure, electric conductivity and pore structure of their lignin-based chars. The results consistently showed that when the carbonization temperature was increased from 600 ℃ to 700 ℃, the electronic resistivity of the chars was sharply promoted leading to the rapid transition of lignin-based chars from an insulator to a semiconductor, and the development of the graphite-like microcrystallite component in the chars was remarkably enhanced, whether lignin as raw materials was modified by nitrogen-containing substances or not. However, urea or melamine modification lead to a reduction of interlayer spacing in the graphite-like microcrystallites, with a more reduction for melamine modification of more nitrogen content. Moreover, urea or melamine modification could obviously promote the electron conductivity of the chars prepared below 700 ℃ but lessen a little for the char prepared above 700 ℃. Outstandingly, urea and melamine modification remarkably suppressed the development of pore structure of lignin-based chars, especially totally the formation of microporosity. Specifically, the surface area of the chars prepared from the unmodified lignin, urea-modified one and melamine-modified one have a big difference with the value of 524, 102 and 69 m2/g, respectively.

Key words: lignin, carbon materials, electrocatalysis, urea, melamine, microstructure

中图分类号: