欢迎访问《林产化学与工业》,

林产化学与工业 ›› 2020, Vol. 40 ›› Issue (3): 45-51.doi: 10.3969/j.issn.0253-2417.2020.03.006

• 研究报告 • 上一篇    下一篇

大豆蛋白/聚丙烯酰胺复合水凝胶的制备及压缩回弹性能研究

南静娅1,张盖同1,王利军1,储富祥1,2,王春鹏1,2,*()   

  1. 1. 中国林业科学研究院林产化学工业研究所; 生物质化学利用国家工程实验室; 国家林业和草原局林产化学工程重点实验室; 江苏省生物质能源与材料重点实验室; 江苏省林业资源高效加工利用协同创新中心, 江苏 南京 210042
    2. 中国林业科学研究院 林业新技术研究所, 北京 100091
  • 收稿日期:2019-11-15 出版日期:2020-06-28 发布日期:2020-06-29
  • 通讯作者: 王春鹏 E-mail:wangcpg@163.com
  • 作者简介:南静娅(1988-),女,山西运城人,助理研究员,博士生,主要从事生物基功能材料的研究工作
  • 基金资助:
    国家重点研发计划资助项目(2016YFD0600705)

Preparation and Compression-resilience Property of Soybean Protein/Polyacrylamide Composite Hydrogels

Jingya NAN1,Gaitong ZHANG1,Lijun WANG1,Fuxiang CHU1,2,Chunpeng WANG1,2,*()   

  1. 1. Institute of Chemical Industry of Forest Products, CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Jiangsu Province; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
    2. Research Institute of Forestry New Technology, CAF, Beijing 100091, China
  • Received:2019-11-15 Online:2020-06-28 Published:2020-06-29
  • Contact: Chunpeng WANG E-mail:wangcpg@163.com

摘要:

以大豆蛋白(SPI)和丙烯酰胺(AAm)为原料,过硫酸铵(APS)为引发剂、N,N'-亚甲基双丙烯酰胺(MBAA)为共价交联剂、CaCl2为离子交联剂、N,N,N',N'-四亚甲基乙二胺(TEMED)为促进剂,制备了一种新型的大豆蛋白/聚丙烯酰胺(SPI/PAAm)复合水凝胶,分析了其结构和力学性能,并研究了其作用机制。结果表明:该复合水凝胶具有离子交联的大豆蛋白聚合物网络和共价交联的聚丙烯酰胺聚合物网络组成的双网络结构,其中,大豆蛋白离子交联网络用于分散外应力和耗散能量,聚丙烯酰胺共价交联网络用于保持形状。双网络结构的协同作用,赋予了水凝胶高弹性、高压缩性及抗疲劳特性。对水凝胶的形貌分析发现:该水凝胶呈现均匀的网孔结构,大豆蛋白均匀分布在复合水凝胶内部。对水凝胶的力学性能分析表明:该水凝胶表现出高弹性和高压缩性能,在经历80%的压缩应变循环压缩10次过程中,可迅速回复到初始状态,而不发生塑性变形和结构破坏;同时还具有优异的韧性和抗疲劳特性,在分别经历20%、50%及80%的压缩应变循环压缩100次后仍可保持形状完整,应力保持率分别为90%、95%和104%,塑性变形率分别为3.1%、5.9%和8.4%,能量损耗系数< 0.3。

关键词: 双网络, 离子交联, 共价交联, 高弹性, 耐疲劳强度

Abstract:

A novel soybean protein/polyacrylamide (SPI/PAAm) composite hydrogel was synthesized, in which soybean protein (SPI) and acrylamide (AAm) were used as raw materials, ammonium persulfate (APS) was used as the initiator, N, N'-methylenebisacrylamide (MBAA) was used as the covalent crosslinker, CaCl2 was used as the ionic crosslinker and N, N, N', N'-tetramethylethylenediamine (TEMED) was used as the accelerator. The structure and mechanical properties of the obtained hydrogels were analyzed, and the mechanical mechanism was then investigated. The results suggest that the obtained hydrogel had a double-network structure, including ionically-crosslinked soybean protein network and covalently-crosslinked polyacrylamide network. For the double-network hydrogel, the ionically-crosslinked network dispersed the applied stress and dissipated the energy, and the covalently-crosslinked network contributed to the shape retention. The synergistic effect resulting fromdouble networks endowed the hydrogel with high elasticity, high compressibility and fatigue resistance.The morphology analysis revealed that the obtained hydrogel showed a uniform cell structure, and the soybean protein was uniformly distributed within the hydrogel. The mechanical analysis indicated that the obtained hydrogel exhibited high compression-resilience property and elasticity, which could rapidly recover to its original shape upon 80% compressive strain without structural collapse or damage during 10 successive uniaxial compression cycles. More encouragingly, the obtained hydrogel possessed outstanding toughness and fatigue resistance, which could remain shape intact after undergoing 100 compression cycles at 20%, 50% and 80% strain, respectively.After 100 compression cycles at 20%, 50% and 80% strain, the corresponding stress remaining rates were 90%, 95% and 104%, the corresponding plastic deformation rates were 3.1%, 5.9%and 8.4%, and all the energy loss coefficients were below 0.3.

Key words: double network, ionic crosslink, covalent crosslink, high elasticity, fatigue resistance

中图分类号: