Chemistry and Industry of Forest Products ›› 2020, Vol. 40 ›› Issue (3): 23-30.doi: 10.3969/j.issn.0253-2417.2020.03.003
Previous Articles Next Articles
Yumeng HU,Minjie HOU,Miaojun XU,Bin LI*()
Received:
2020-02-07
Online:
2020-06-28
Published:
2020-06-29
Contact:
Bin LI
E-mail:libinzh62@163.com
CLC Number:
Yumeng HU,Minjie HOU,Miaojun XU,Bin LI. Preparation and Properties of Cellulose-based Integrated Sandwich Structure Supercapacitor[J]. Chemistry and Industry of Forest Products, 2020, 40(3): 23-30.
1 |
HU M M , WANG J Q , LIU J , et al. An intrinsically compressible and stretchable all-in-one configured supercapacitor[J]. Chemical Communications, 2018, 54 (48): 6200- 6203.
doi: 10.1039/C8CC03375G |
2 |
HU Y , CHENG H H , ZHAO F , et al. All-in-one graphene fiber supercapacitor[J]. Nanoscale, 2014, 6 (12): 6448- 6451.
doi: 10.1039/c4nr01220h |
3 |
BAI Y , LIU R , LI E Y , et al. Graphene/carbon nanotube/bacterial cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications[J]. Journal of Alloys and Compounds, 2019, 777, 524- 530.
doi: 10.1016/j.jallcom.2018.10.376 |
4 |
LUO H L , DONG J J , ZHANG Y , et al. Constructing 3D bacterial cellulose/graphene/polyaniline nanocomposites by novel layer-by-layer in situ culture toward mechanically robust and highly flexible freestanding electrodes for supercapacitors[J]. Chemical Engineering Journal, 2018, 334, 1148- 1158.
doi: 10.1016/j.cej.2017.11.065 |
5 |
YANG C H , ZHANG S H , GUAN C . Polypyrrole nanowires coated with a hollow shell for enhanced electrochemical performance[J]. Materials Research Bulletin, 2018, 100, 116- 119.
doi: 10.1016/j.materresbull.2017.12.015 |
6 |
SAHATIYA P , MADHAVA C , SHINDE A , et al. Flexible substrate based few layer MoS2 electrode for passive electronic devices and interactive frequency modulation based on human motion[J]. IEEE Transactions on Nanotechnology, 2018, 17 (2): 338- 344.
doi: 10.1109/TNANO.2018.2802649 |
7 | ZHANG C G , YIN Y N , YANG Q L , et al. Flexible cellulose/BaTiO3 nanocomposites with high energy density for film dielectric capacitor[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (12): 10641- 10648. |
8 |
HOU M J , XU M J , HU Y M , et al. Nanocellulose incorporated graphene/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes[J]. Electrochimica Acta, 2019, 313, 245- 254.
doi: 10.1016/j.electacta.2019.05.037 |
9 |
WANG Z H , TAMMELA P , STROMME M , et al. Cellulose-based supercapacitors:Material and performance considerations[J]. Advanced Energy Materials, 2017, 7 (18): 1700130.
doi: 10.1002/aenm.201700130 |
10 | ZHENG Q F , CAI Z Y , MA Z Q , et al. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors[J]. ACS Applied Materials & Interfaces, 2015, 7 (5): 3263- 3271. |
11 |
LIU Y , ZHOU J , ZHU E W , et al. Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one-step cross-linking for robust supercapacitors[J]. Journal of Materials Chemistry C, 2015, 3 (5): 1011- 1017.
doi: 10.1039/C4TC01822B |
12 |
WANG Q R , WANG X Y , WAN F , et al. An all-freeze-casting strategy to design typographical supercapacitors with integrated architectures[J]. Small, 2018, 14 (23): 1800280.
doi: 10.1002/smll.201800280 |
13 |
ADHIKARI A D , ORAON R , TIWARI S K , et al. Effect of waste cellulose fibres on the charge storage capacity of polypyrrole and graphene/polypyrrole electrodes for supercapacitor application[J]. RSC Advances, 2015, 5 (35): 27347- 27355.
doi: 10.1039/C4RA16174B |
14 |
LIU Y , ZHOU J , TANG J , et al. Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high-performance supercapacitors[J]. Chemistry of Materials, 2015, 27 (20): 7034- 7041.
doi: 10.1021/acs.chemmater.5b03060 |
15 |
WANG Z H , TAMMELA P , STRØMME M , et al. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance[J]. Nanoscale, 2015, 7 (8): 3418- 3423.
doi: 10.1039/C4NR07251K |
16 |
SAITO T , NISHIYAMA Y , PUTAUX J L , et al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose[J]. Biomacromolecules, 2006, 7 (6): 1687- 1691.
doi: 10.1021/bm060154s |
17 | MACE J , NOH G , JEON Y , et al. Load and capacitor stacking topologies for DC-DC step down conversion[J]. Journal of Power Electronics, 2019, 19 (6): 1449- 1457. |
18 | PARK I S , RYU K M , JEONG J , et al. Dielectric stacking effect of Al2O3 and HfO2 in metal-insulator-metal capacitor[J]. IEEE Electron Device Letters, 2013, 34 (1): 120- 122. |
19 |
CAO K , CHENG C H . Stacked plate capacitor design technique for filters constructed on multilayer substrates[J]. Electronics Letters, 2016, 52 (20): 1695- 1697.
doi: 10.1049/el.2016.1519 |
20 | SUN K J , FENG E , ZHAO G H , et al. A single robust hydrogel film based integrated flexible supercapacitor[J]. ACS Sustainable Chemistry & Engineering, 2018, 7 (1): 165- 173. |
21 |
GUO Y , ZHENG K Q , WAN P B . A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors[J]. Small, 2018, 14 (14): 1704497.
doi: 10.1002/smll.201704497 |
22 | MAITI S , DAS D , SEN K . Studies on electro-conductive yarns prepared by in situ chemical and electrochemical polymerization of pyrrole[J]. Journal of Applied Polymer Science, 2012, 123 (1): 455- 462. |
23 | WANG H H , BIAN L Y , ZHOU P P , et al. Core-sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1 (3): 578- 584. |
24 |
ZHANG F , XIAO F , DONG Z H , et al. Synthesis of polypyrrole wrapped graphene hydrogels composites as supercapacitor electrodes[J]. Electrochimica Acta, 2013, 114, 125- 132.
doi: 10.1016/j.electacta.2013.09.153 |
25 |
LIU J H , XU X Y , YU J , et al. Facile construction of 3D porous carbon nanotubes/polypyrrole and reduced graphene oxide on carbon nanotube fiber for high-performance asymmetric supercapacitors[J]. Electrochimica Acta, 2019, 314, 9- 19.
doi: 10.1016/j.electacta.2019.05.059 |
26 | CHEN J J , HUANG Y , LI C , et al. Synthesis of NiO@MnO2 core/shell nanocomposites for supercapacitor application[J]. Applied Surface Science, 2015, 360 (12): 534- 539. |
[1] | Tingfang SONG,Yongxian MAI,Xiuzhi TIAN,Haibo DENG,Xue JIANG. Poly (Lactic Acid) Composite Strengthened with Long-chain Amidated Nanocellulose [J]. Chemistry and Industry of Forest Products, 2020, 40(1): 31-36. |
[2] | Ying GUAN,Jun RAO,Yule WU,Ran YANG,Hui GAO. Preparation and Characterization of Carboxymethyl Hemicelluloses/Chitosan/Graphene Oxide Composite Film [J]. Chemistry and Industry of Forest Products, 2019, 39(6): 13-20. |
[3] | SHAN Yiwei, WU Hui, XIAO He, CHEN Lihui, HUANG Liulian. Preparation of Carbon-doped Zinc Oxide Induced by Nanocellulose and Its Photocatalytic Degradation Properties of Tetracycline [J]. Chemistry and Industry of Forest Products, 2019, 39(5): 115-120. |
[4] | Jianxiong XING,Kai ZHENG,Zunqiang HAN,Weitao XU,Kun WANG. Research Progress on Application of Cellulose-based Materials as Electrode in Flexible Supercapacitor [J]. Chemistry and Industry of Forest Products, 2019, 39(4): 9-17. |
[5] | Jinwei CHEN,Dan WANG,Shibin SHANG,He LIU,Zhaosheng CAI. Preparation of Amino-terminated Hyperbranched Polymer Grafted Dialdehyde-based Nanocellulose and Its Adsorption Properties of Ni2+ [J]. Chemistry and Industry of Forest Products, 2019, 39(4): 18-26. |
[6] | Mingcheng XIONG,Zi WANG,Yuxin YAN,Yanling ZHENG,Zhenzhen XIAO,Qilin LU,Biao HUANG. Preparation of Nanocrystalline Cellulose by the Catalytic Hydrolysis of Pulp with p-Toluenesulfonic Acid Under Ultrasonication [J]. Chemistry and Industry of Forest Products, 2019, 39(4): 72-76. |
[7] | CHEN Jinwei, SHANG Shibin, SHEN Minggui, WANG Dan, FU Fei, CAI Zhaosheng. Preparation of Amino Acid-terminated Nanocellulose and Adsorption Properties of Pb(Ⅱ) [J]. Chemistry and Industry of Forest Products, 2018, 38(6): 11-19. |
[8] | CAO Fei, ZHAO Xin, HU Yingcheng, CHEN Peipei, LI Huifang. Preparationand Characterization of Nanocellulose from Coconut Husk Fibers Based on Ionic Liquids [J]. Chemistry and Industry of Forest Products, 2017, 37(5): 139-145. |
[9] | WANG Meng-meng, WANG Ai-ting, LIU He, LIU Shi-wei, YU Shi-tao. Preparation and Shape Recovery Property of the Nanocellulose Aerogels [J]. Chemistry and Industry of Forest Products, 2016, 36(4): 14-22. |
[10] | TAO Xiang-wen, YE Dai-yong. Preparation and Characterization of Water-redispersed Nanocellulose Whiskers [J]. Chemistry and Industry of Forest Products, 2014, 34(3): 7-12. |
[11] | TANG Li-rong;OU Wen;LIN Wen-yi;CHEN Yan-dan;CHEN Xue-rong;HUANG Biao. Optimization of Acid Hydrolysis Processing of Nanocellulose Crystal Using Response Surface Methodology [J]. , 2011, 31(6): 61-65. |
[12] | LI Jin-ling;CHEN Guang-xiang;YE Dai-yong. Progress of Research on Preparation and Application of Nanocellulose Whiskers [J]. , 2010, 30(2): 121-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||