Welcome to Chemistry and Industry of Forest Products,

Chemistry and Industry of Forest Products ›› 2022, Vol. 42 ›› Issue (2): 63-70.doi: 10.3969/j.issn.0253-2417.2022.02.009

Previous Articles     Next Articles

Preparation of Biomass-derived Fe-N-C Porous Carbon Material and Its Catalytic Reduction of Nitrobenzene

Xing LIU, Zhu YIN, Beili LU(), Fengzhen WU, Biao HUANG   

  1. College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
  • Received:2021-03-04 Online:2022-04-28 Published:2022-05-06
  • Contact: Beili LU E-mail:lubl@fafu.edu.cn

Abstract:

Fir sawdust, urea and FeCl3·6H2O were mixed thoroughly at a mass ratio of 1∶[KG-*9]1∶[KG-*9]2 to generate the nitrogen doped porous carbon materials loaded with iron(Fe-N-C) after annealing the mixtures at the temperature of 700-1 000 ℃. The elemental composition, structure and surface properties of the obtained carbon materials at different temperatures were analyzed. Following that, the catalytic performance of the reduction of nitrobenzene were investigated. The results showed that the carbonization temperature had a significant effect on the iron and doped nitrogen species. At 700 ℃, the iron species in Fe-N-C-700 were mainly Fe3O4, whereas the nitrogen species were mainly pyridinic-N and pyrrolic-N. As the temperature rose, the iron species became mostly metallic iron, and a portion of the pyridinic-N was changed to graphitic-N. When the temperature was 900 ℃, the manufactured porous carbon material(Fe-N-C-900) had a Fe content of 43.42% and a N content of 2.19%, of which the graphitic-N was 37.7%, pyridinic-N was 23.8%, pyrrolic-N was 22.9% and oxidized-N was 15.6%. When the reaction duration was 2.5 h at 55 ℃. The conversion and selectivity of catalytic reduction of nitrobenzene were close to 100%.The high catalytic performance of Fe-N-C-900 might be due to the synergistic effect between the high content of iron species and graphite nitrogen formed during the calcination process. When Fe-N-C-900 was used for catalytic reduction of nitroarenes with electron-donating substituents such as methyl, amino or hydroxyl group, the corresponding products might be produced with high conversion and selectivity. In additon, when the nitroarenes contained electron-withdrawing substituents such as chlorine or iodine group, the reaction time must be extended to 4 h, and the conversion rate could reach up to 97.3% with the product selectivity above 99%. It indicated that Fe-C-N-900 had good universality for various substrates. And the catalyst had good stability and magnetic recyclability. After 5 times of recycling, the catalytic performance did not decrease obviously, the nitrobenzene conversion remained at 98.3% with the selectivity of 96.5%.

Key words: fir sawdust, porous carbon materials, doping, catalyst

CLC Number: