Chemistry and Industry of Forest Products ›› 2022, Vol. 42 ›› Issue (3): 83-89.doi: 10.3969/j.issn.0253-2417.2022.03.011
Previous Articles Next Articles
Received:
2021-04-08
Online:
2022-06-28
Published:
2022-07-04
Contact:
Lingang LU
E-mail:llg@iccas.ac.cn
CLC Number:
Yuxin LU, Lingang LU. Thermal Properties and Thermal Decomposition Kinetics of Tannic Acid[J]. Chemistry and Industry of Forest Products, 2022, 42(3): 83-89.
Table 1
The corresponding temperature of different α was determined at the heating rate of 10-40 K/min"
转化率(α) conversion rate | 不同升温速率的对应的温度/℃ temp. at different heating rates | 不同方法下的活化能(E)/(kJ·mol-1) activation energy with different methods | |||||
10 K/min | 20 K/min | 30 K/min | 40 K/min | KSA | Ozawa | ||
0.20 | 492.81 | 495.68 | 498.77 | 496.55 | 410.74 | 398.43 | |
0.25 | 498.07 | 503.05 | 503.81 | 503.93 | 411.84 | 399.55 | |
0.30 | 504.36 | 507.92 | 508.62 | 510.15 | 508.27 | 491.35 | |
0.35 | 512.17 | 512.47 | 513.64 | 516.22 | 599.34 | 578.06 | |
0.40 | 519.94 | 519.29 | 520.42 | 523.71 | 466.71 | 452.06 | |
0.45 | 525.55 | 527.92 | 528.59 | 533.14 | 391.33 | 380.51 | |
0.50 | 533.81 | 536.08 | 535.95 | 539.42 | 548.11 | 529.70 | |
0.55 | 540.27 | 543.56 | 543.40 | 546.03 | 582.12 | 562.14 | |
0.60 | 546.29 | 550.77 | 551.34 | 551.96 | 547.42 | 529.24 | |
0.65 | 552.81 | 556.26 | 556.41 | 557.86 | 685.70 | 660.83 | |
0.70 | 562.48 | 563.25 | 562.17 | 562.94 | 372.00 | 362.65 |
Table 2
The fitted well kinetic mechanism function by Satava method (20 K/min)"
函数号 function No. | 函数名称 function name | G(α) | R2 | E/(kJ·mol-1) |
9 | Z-L-T | 0.9880 | 114.88 | |
10 | Avrami-Erofeev | 0.9842 | 13.04 | |
11 | Avrami-Erofeev | 0.9842 | 17.38 | |
12 | Avrami-Erofeev | 0.9842 | 20.86 | |
13 | Avrami-Erofeev | 0.9842 | 26.07 | |
14 | Avrami-Erofeev | 0.9842 | 34.76 | |
15 | Avrami-Erofeev | 0.9842 | 39.11 | |
16 | Mample单行法则Mampel power law(n=1) | - ln(1-α) | 0.9842 | 52.15 |
17 | Avrami-Erofeev | 0.9842 | 78.22 | |
18 | Avrami-Erofeev | [-ln(1-α)]2 | 0.9842 | 104.29 |
19 | Avrami-Erofeev | [-ln(1-α)]3 | 0.9842 | 156.44 |
20 | Avrami-Erofeev | [-ln(1-α)]4 | 0.9842 | 208.59 |
37 | 反应级数reaction order | (1-α)-1-1 | 0.9922 | 69.16 |
44 | J-M-A(n=0.1053) | [-ln(1-α)]1/n | 0.9842 | 495.38 |
1 | KOLB V M . Green Organic Chemistry and Its Interdisciplinary Applications[M]. Abingdon: CRC Press Taylor and Francis Group, 2017. |
2 |
CAROLE T M , PELLEGRINO J , PASTER M D . Opportunities in the industrial biobased products industry[J]. Applied Biochemistry and Biotechnology, 2004, 115, 871- 885.
doi: 10.1385/ABAB:115:1-3:0871 |
3 |
姚奉奇, 陶骏骏, 王海晖, 等. 茶多酚热解特性及其反应机理研究[J]. 林产化学与工业, 2017, 37 (5): 19- 27.
doi: 10.3969/j.issn.0253-2417.2017.05.003 |
YAO F Q , TAO J J , WANG H H , et al. Study of pyrolysis behavior and reaction mechanism of tea polyphenols[J]. Chemistry and Industry of Forest Products, 2017, 37 (5): 19- 27.
doi: 10.3969/j.issn.0253-2417.2017.05.003 |
|
4 | MOHANTY A K , MISRA M , DRZAL L T . Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world[J]. Journal of Polymers and the Environment, 2002, 10 (1): 19- 26. |
5 |
GANDINI A . Polymers from renewable resources: A challenge for the future of macromolecular materials[J]. Macromolecules, 2008, 41 (24): 9491- 9504.
doi: 10.1021/ma801735u |
6 | 李卓, 张娜, 胡立红, 等. 木质素基阻燃剂的研究进展[J]. 纤维素科学与技术, 2021, 29 (1): 59- 68. |
LI Z , ZHANG N , HU L H , et al. Research progress of lignin-based flame retardants[J]. Journal of Cellulose Science and Technology, 2021, 29 (1): 59- 68. | |
7 |
SHIBATA M , TERAMOTO N , TAKADA Y , et al. Preparation and properties of biocomposites composed of glycerol-based epoxy resins, tannic acid, and wood flour[J]. Journal of Applied Polymer Science, 2010, 118 (5): 2998- 3004.
doi: 10.1002/app.32695 |
8 | 李冬冬, 蔡超, 杨萌, 等. 基于单宁酸的功能材料研究进展[J]. 高分子通报, 2017, (9): 10- 20. |
LI D D , CAI C , YANG M , et al. Praogress in the application tannic acid to the functional materials[J]. Chinese Polymer Bulletin, 2017, (9): 10- 20. | |
9 | 石闪闪, 何国庆. 单宁酸及其应用研究进展[J]. 食品工业科技, 2012, 33 (4): 410- 412.410-412, 416 |
SHI S S , HE G Q . Tannic acid and the progress of its application[J]. Science and Technology of Food Industry, 2012, 33 (4): 410- 412.410-412, 416 | |
10 |
GRIGSBY W J , BRIDSON J H , LOMAS C , et al. Esterification of condensed tannins and their impact on the properties of poly(lactic acid)[J]. Polymers, 2013, 5, 344- 360.
doi: 10.3390/polym5020344 |
11 | KIRATITANAVIT W, XIA Z Y, SINGH A, et al. Tannic acid: A bio-based intumescent char-forming additive for nylon 6[C]// Annual Technical Conference of Society of Plastics Engineers. Dubai: Society of Petroleum Engineers, 2016. |
12 | 胡雅琪. 单宁酸基环氧及固化剂的制备与性能[D]. 南昌: 江西科技师范大学, 2020. |
HU Y Q. Preparation and properties of tannic acid based epoxy and curing agent[D]. Nanchang: Jiangxi Science and Technology Normal University, 2020. | |
13 | 朱敏, 何圳, 杜天意, 等. 单宁酸—铁体系改性EVA阻燃材料的研究[J]. 华北科技学院学报, 2019, 16 (6): 48- 52. |
ZHU M , HE Z , DU T Y , et al. Research on tannic acid-iron modified EVA flame retardant[J]. Journal of North China Institute of Science and Technology, 2019, 16 (6): 48- 52. | |
14 | MENG W H, DONG Y L, LI J H, et al. Bio-based phytic acid and tannic acid chelate-mediated interfacial assembly of Mg(OH)2 for simultaneously improved flame retardancy, smoke suppression and mechanical properties of PVC[J/OL]. Composites Part B: Engineering, 2020, 188: 1-9[2021-03-15]. https://doi.org/10.1016/j.compositesb.2020.107854. |
15 | LIU R , ZHENG J C , GUO R X , et al. Synthesis of new biobased antibacterial methacrylates derived from tannic acid and their application in UV-cured coatings[J]. Industrial & Engineering Chemistry Research, 2014, 53 (27): 10835- 10840. |
16 | QI M , XU Y J , RAO W H , et al. Epoxidized soybean oil cured with tannic acid for fully bio-based epoxy resin[J]. Royal Society Chemistry Advances, 2018, 8, 26948- 26958. |
17 | 胡荣祖, 高胜利, 赵凤起. 热分析动力学[M]. 2版 北京: 科学出版社, 2008. |
HU R Z , GAO S L , ZHAO F Q . Thermal Analysis Kinetics[M]. 2nd ed Beijing: Science Press, 2008. | |
18 | 秦芳芳. 无机化合物的热分解机理及其动力学研究[D]. 武汉: 中国地质大学, 2008. |
QIN F F. Thermokinetics study on the decomposition mechanism of inorganic compouds[D]. Wuhan: China University of Geosciences, 2008. | |
19 | XIA Z , SINGH A , KIRATITANAVIT W , et al. Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid[J]. Thermochimica Acta, 2015, 605, 77- 85. |
20 | 马俊楠, 孟祥龙, 张朔生. 没食子酸的热解与燃烧动力学特性研究[J]. 世界中西医结合杂志, 2013, 8 (5): 468- 471. |
MA J N , MENG X L , ZHANG S S . Characteristic study on pyrolysis and combustion kinetics of gallate[J]. World Journal of Integrated Traditional and Western Medicine, 2013, 8 (5): 468- 471. |
[1] | Shuai WANG, Xing TANG, Yong SUN, Xianhai ZENG, Lu LIN. Optimization and Kinetics of Hydrolysis of 5-Chloromethylfurfural to 5-Hydroxymethylfurfural [J]. Chemistry and Industry of Forest Products, 2022, 42(3): 65-74. |
[2] | Yifei DU, Yue PU, Liping ZHANG, Qiang ZHAO, Xianliang SONG. Power Generation Performance of Lignin in Direct Biomass Fuel Cell [J]. Chemistry and Industry of Forest Products, 2022, 42(3): 75-82. |
[3] | LIU Yupeng, KUANG Peipei, CHEN Ying, WANG Jifu, WANG Chunpeng, CHU Fuxiang. Research Progress of Biomass-based Stimulus-responsive Hydrogels [J]. Chemistry and Industry of Forest Products, 2022, 42(3): 126-134. |
[4] | Tingting YU, Zongze LYU, Xiang LI, Jindong HU, Peiyan LI, Zhiguo LI. Preparation and Electrochemical Properties of Bamboo Based Ultra-thick Carbonaceous Electrode Materials [J]. Chemistry and Industry of Forest Products, 2022, 42(2): 10-18. |
[5] | Kainan JIN, Songlin ZUO, Youcai GUI, Baoshou SHEN. Studies on Lignin-based Carbon Materials as Electrocatalysts of Fuel Cells Cathode Ⅰ: Pyrolysis Process of Modified Enzymatic Hydrolysis Lignin [J]. Chemistry and Industry of Forest Products, 2021, 41(6): 1-9. |
[6] | Jie TIAN, Rui LOU, Xiangyu XUE, Hong ZHANG, Shubin WU, Huimin XU. Thermal Degradation Characteristics of Lignin Nanoparticles and Its Reaction Kinetics Analysis [J]. Chemistry and Industry of Forest Products, 2021, 41(6): 97-104. |
[7] | Mengyu LI, Peng YANG, Chun CHANG, Zhiyong CHEN, Jiande SONG. Research Progress in High-value Utilization of Furfural Residue [J]. Chemistry and Industry of Forest Products, 2021, 41(6): 117-126. |
[8] | Qiuhao WU, Yunpu WANG, Shumei ZHANG, Yuan ZENG, Yuhuan LIU, Roger RUAN. Research Progress on Microwave-assisted Catalytic Pyrolysis of Waste Oil for Hydrocarbon-rich Bio-oil [J]. Chemistry and Industry of Forest Products, 2021, 41(6): 127-138. |
[9] | Haonan CHEN, Ting YU, Yali ZHOU, Xiping LEI, Xiaolin GUAN. Research Progress on Electrode Materials from Activated Carbon-based Supercapacitors [J]. Chemistry and Industry of Forest Products, 2021, 41(5): 113-125. |
[10] | Chongxin YIN, Min WANG, Jinlan CHENG, Huiyang BIAN, Weibing WU, Hongqi DAI. Research Progress of Application of Hydrotropes in Biorefinery [J]. Chemistry and Industry of Forest Products, 2021, 41(3): 134-140. |
[11] | Tingzhou LEI, Xiaofei XIN, Zaifeng LI, Jinping LI, Liya ZHANG. A Review of Torrefaction Pretreatment for Preparation Biomass Clean Briquette Fuels [J]. Chemistry and Industry of Forest Products, 2021, 41(2): 110-118. |
[12] | Keming ZHU, Dechao WANG, Yongfeng ZHU, Wenbin LI, Yunwu ZHENG, Zhifeng ZHENG. Catalytic Upgrading of Cellulose Pyrolysis Vapor for Furan Compounds [J]. Chemistry and Industry of Forest Products, 2021, 41(1): 85-92. |
[13] | Xinchi ZHANG, Shanmei DONG, Yue WANG, Shiliang WU, Rui XIAO. Comprehensive Utilization Scheme and Economic Feasibility of Biomass Pyrolysis Products [J]. Chemistry and Industry of Forest Products, 2021, 41(1): 100-106. |
[14] | Bo CHEN,Bo LIU,Zhangming SHI. Theoretical Study on Pyrolysis Behavior of 5-HMF [J]. Chemistry and Industry of Forest Products, 2020, 40(5): 27-33. |
[15] | Hongmei YANG,Wei XU,Lijing GAO,Guomin XIAO. Pyrolysis of Lemongrass Residue Catalyzed by NaOH Treated ZSM-5 Under Methanol Atmosphere [J]. Chemistry and Industry of Forest Products, 2020, 40(5): 50-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||