Chemistry and Industry of Forest Products ›› 2023, Vol. 43 ›› Issue (1): 15-24.doi: 10.3969/j.issn.0253-2417.2023.01.002
Previous Articles Next Articles
Jurong REN1,2(), Yunhong SU3, Yunjuan SUN1,2,*(
), Hao YING1,2, Zhongzhi YANG1,2, Le XU1,2
Received:
2021-11-26
Online:
2023-02-28
Published:
2023-02-28
Contact:
Yunjuan SUN
E-mail:17853142212@163.com;sunshine990429@163.com
CLC Number:
Jurong REN, Yunhong SU, Yunjuan SUN, Hao YING, Zhongzhi YANG, Le XU. K/Ca Catalytic Steam Gasification of Sawdust for Production of Hydrogen-rich Syngas[J]. Chemistry and Industry of Forest Products, 2023, 43(1): 15-24.
Table 1
Main chemical reactions in steam gasification of biomass"
序号 No. | 反应类型reaction type | 反应式reaction equation | 焓变/(kJ·mol-1) enthalpy change |
1 | 热解反应pyroilsis | 生物质→ C+焦油+热解气 | |
2 | 焦油裂解反应tar cracking | 焦油→ aH2+bCH4+cCO+dCO2+eH2O+CmHn | |
3 | 炭气化反应char steam gasification | C+H2O(g)→ H2+CO | 118.9 |
4 | 炭气化反应char steam gasification | C+H2O(g)→ H2+CO2 | 90.2 |
5 | CO2还原反应reduction reaction of CO2 | C+CO2→ 2CO | 173.8 |
6 | 甲烷化反应methanation | C+2H2→ 4CH4 | -74.8 |
7 | 水气转化反应water-gas shifting | CO+H2O(g)→ H2+CO2 | -40.9 |
8 | 甲烷水蒸气重整反应steam reforming of CH4 | CH4+H2O(g)→ 3H2+CO | 206.3 |
9 | 甲烷水蒸气重整反应steam reforming of CH4 | CH4+2H2O(g)→ 4H2+CO2 | 165.0 |
10 | 碳氢化合物蒸气重整反应hydrocarbon vapor reforming | CmHn+2nH2O(g)→(2n+m/2)H2+nCO2 |
Table 3
Effect of KOH mass fraction on results of catalytic gasification"
KOH质量分数/% mass fraction of KOH solution | 合成气组分体积分数/% volume fraction of gas | QLHV/ (MJ·m-3) | 产气率/ (L·g-1) gas production rate | 产氢率/(g·kg-1) hydrogen production rate | 碳转化率/% carbon conversion | |||
H2 | CH4 | CO | CO2 | |||||
0 | 44.13 | 7.96 | 20.03 | 25.09 | 11.92 | 0.85 | 32.52 | 47.38 |
2 | 55.36 | 5.76 | 19.34 | 17.72 | 11.63 | 1.79 | 85.94 | 78.15 |
4 | 56.60 | 4.73 | 19.87 | 17.22 | 11.32 | 1.82 | 92.13 | 80.07 |
6 | 57.54 | 5.13 | 17.97 | 17.63 | 11.42 | 1.80 | 92.36 | 76.98 |
8 | 56.77 | 5.63 | 18.79 | 16.89 | 11.73 | 1.80 | 90.91 | 77.74 |
Table 4
Effect of K/Ca composite ratio on results of catalytic gasification"
n(K)∶n(Ca) | 合成气组分体积分数/% volume fraction of gas | QLHV/ (MJ·m-3) | 产气率/(L·g-1) gas production rate | 产氢率/(g·kg-1) hydrogen production rate | 碳转化率/% carbon conversion | ||||
H2 | CH4 | CO | CO2 | CmHn | |||||
1∶3 | 50.83 | 7.28 | 18.68 | 20.37 | 4.41 | 12.26 | 1.32 | 59.77 | 63.97 |
1∶2 | 52.32 | 5.49 | 16.83 | 22.53 | 2.83 | 11.53 | 1.38 | 64.63 | 65.12 |
1∶1 | 52.40 | 5.79 | 16.06 | 23.25 | 2.49 | 11.34 | 1.55 | 72.45 | 73.47 |
2∶1 | 56.14 | 4.81 | 16.77 | 20.12 | 2.15 | 11.27 | 1.76 | 88.29 | 77.04 |
3∶1 | 54.96 | 4.58 | 15.04 | 23.43 | 1.99 | 10.74 | 1.64 | 80.31 | 74.08 |
Table 5
Effect of catalyst calcination temperature on results of catalytic gasification"
催化剂 catalyst | 合成气组分体积分数/% volume fraction of gas | QLHV/ (MJ·m-3) | 产气率/(L·g-1) gas production rate | 产氢率/(g·kg-1) hydrogen production rate | 碳转化率/% carbon conversion | ||||
H2 | CH4 | CO | CO2 | CmHn | |||||
无催化剂without catalyst | 44.13 | 7.96 | 20.03 | 25.09 | 2.79 | 11.92 | 0.85 | 32.52 | 47.38 |
白云石dolomite | 49.91 | 6.91 | 17.05 | 23.43 | 2.70 | 11.73 | 1.26 | 55.96 | 63.10 |
K/Ca-750 | 53.40 | 4.51 | 17.94 | 22.02 | 2.14 | 11.00 | 1.66 | 79.32 | 77.83 |
K/Ca-800 | 54.23 | 4.09 | 15.58 | 24.13 | 1.96 | 10.53 | 1.72 | 83.11 | 78.95 |
K/Ca-850 | 54.24 | 4.14 | 15.24 | 24.39 | 1.99 | 10.53 | 1.73 | 83.59 | 79.35 |
K/Ca-900 | 56.14 | 4.81 | 16.77 | 20.12 | 2.15 | 11.27 | 1.76 | 88.29 | 77.04 |
Table 6
Effect of reaction temperature on results of catalytic gasification"
反应温度/℃ temperature | 合成气组分体积分数/% volume fraction of gas | QLHV/ (MJ·m-3) | 产气率/(L·g-1) gas production rate | 产氢率/(g·kg-1) hydrogen production rate | 碳转化率/% carbon conversion | ||||
H2 | CH4 | CO | CO2 | CmHn | |||||
600 | 40.70 | 4.33 | 27.15 | 18.86 | 3.64 | 13.59 | 0.44 | 16.39 | 25.53 |
700 | 54.91 | 4.59 | 11.55 | 26.80 | 2.14 | 10.39 | 1.36 | 67.17 | 60.70 |
750 | 59.09 | 3.81 | 13.27 | 21.94 | 1.89 | 10.62 | 1.72 | 90.64 | 70.22 |
800 | 56.14 | 4.81 | 16.77 | 20.12 | 2.15 | 11.27 | 1.76 | 88.29 | 77.04 |
850 | 56.82 | 4.39 | 21.51 | 15.40 | 1.88 | 11.61 | 1.66 | 84.10 | 71.65 |
Table 7
Effect of steam flow rate on results of catalytic gasification"
水蒸气流量/ (mL·min-1) steam flow rate | 合成气组分体积分数/% volume fraction of gas | QLHV/ (MJ·m-3) | 产气率/(L·g-1) gas production rate | 产氢率/(g·kg-1) hydrogen production rate | 碳转化率/% carbon conversion | ||||
H2 | CH4 | CO | CO2 | CmHn | |||||
0.4 | 52.75 | 6.12 | 16.64 | 21.87 | 2.62 | 11.65 | 1.43 | 68.14 | 66.65 |
0.7 | 52.91 | 5.41 | 14.71 | 24.55 | 2.42 | 11.04 | 1.63 | 76.76 | 76.41 |
1.0 | 59.09 | 3.81 | 13.27 | 21.94 | 1.89 | 10.62 | 1.72 | 90.64 | 70.22 |
1.3 | 58.94 | 4.25 | 15.55 | 19.23 | 2.03 | 11.14 | 1.61 | 84.56 | 65.89 |
Table 8
Effect of catalyst dosage on results of catalytic gasification"
催化剂用量/(g·g-1) dosage of catalyst | 合成气组分体积分数/% volume fraction of gas | QLHV/ (MJ·m-3) | 产气率/(L·g-1) gas production rate | 产氢率/(g·kg-1) hydrogen production rate | 碳转化率/% carbon conversion | ||||
H2 | CH4 | CO | CO2 | CmHn | |||||
0 | 41.63 | 11.46 | 31.46 | 13.62 | 1.82 | 13.73 | 0.76 | 29.43 | 25.53 |
0.3 | 59.09 | 3.81 | 13.27 | 21.94 | 1.89 | 10.62 | 1.72 | 90.64 | 70.22 |
0.6 | 58.50 | 4.06 | 15.64 | 19.91 | 1.90 | 10.94 | 1.99 | 103.18 | 83.25 |
0.9 | 60.00 | 3.80 | 15.27 | 19.09 | 1.84 | 10.93 | 2.00 | 106.65 | 80.54 |
1.2 | 61.06 | 3.80 | 15.52 | 17.99 | 1.80 | 10.99 | 1.97 | 107.27 | 76.99 |
1 | ISLAM M W. A review of dolomite catalyst for biomass gasification tar removal[J/OL]. Fuel, 2020, 267: 117095[2021-11-10]. https://doi.org/10.1016/j.fuel.2020.117095. |
2 | 于蓬, 王健, 郑金凤, 等. 氢能利用与发展综述[J]. 汽车实用技术, 2019, (24): 22- 25. |
YU P , WANG J , ZHENG J F , et al. A review of hydrogen energy utilization and development[J]. Automobile Practical Technology, 2019, (24): 22- 25. | |
3 | 王敏. 国内外新能源制氢发展现状及未来趋势[J]. 化学工业, 2018, (36): 13- 18. |
WANG M . The status quo and trend of producing hydrogen from new energy[J]. Chemical Industry, 2018, (36): 13- 18. | |
4 |
NOROUZI O , SAFARI F , JAFARIAN S , et al. Hydrothermal gasification performance of Enteromorpha intestinalis as an algal biomass for hydrogen-rich gas production using Ru promoted Fe-Ni/-Al2O3 nano catalysts[J]. Energy Conversion and Management, 2017, 141, 63- 71.
doi: 10.1016/j.enconman.2016.04.083 |
5 | JI G , XU X , YANG H , et al. Enhanced hydrogen production from sawdust decomposition using hybrid-functional Ni-CaO-Ca2SiO4 materials[J]. Environmental Science & Technology, 2017, 51 (19): 11484- 11492. |
6 |
KONG M , FEI J , WANG S , et al. Influence of supports on catalytic behavior of nickel catalysts in carbon dioxide reforming of toluene as a model compound of tar from biomass gasification[J]. Bioresource Technology, 2011, 102 (2): 2004- 2008.
doi: 10.1016/j.biortech.2010.09.054 |
7 | 贾爽, 应浩, 孙云娟, 等. 生物质热解与气化制氢研究进展[J]. 现代化工, 2015, 35 (1): 53- 57. |
JIA S , YING H , SUN Y J , et al. Research progress of biomass pyrolysis and gasification to produce hydrogen[J]. The Modern Chemical Industry, 2015, 35 (1): 53- 57. | |
8 | 贾爽, 应浩, 徐卫, 等. 生物质炭水蒸气气化制取富氢合成气[J]. 化工进展, 2018, 37 (4): 1402- 1407. |
JIA S , YING H , XU W , et al. Steam gasification of biochar to produce hydrogen-rich syngas[J]. Chemical Progress, 2018, 37 (4): 1402- 1407. | |
9 | 孙宁, 应浩, 徐卫, 等. 松木屑催化气化制取富氢燃气[J]. 化工进展, 2017, 36 (6): 2158- 2163. |
SUN N , YING H , XU W , et al. Catalytic gasification of pine sawdust to produce hydrogen-rich gas[J]. Chemical Progress, 2017, 36 (6): 2158- 2163. | |
10 | CAO L, YU I K M, XIONG X, et al. Biorenewable hydrogen production through biomass gasification: A review and future prospects[J/OL]. Environmental Research, 2020, 186: 109547[2021-11-10]. https://doi.org/10.1016/j.envres.2020.109547. |
11 | NING S Y , JIA S , YING H , et al. Hydrogen-rich syngas produced by catalytic steam gasification of corncob char[J]. Biomass and Bioenergy, 2018, 117, 131- 136. |
12 | TAN R S, ABDULLAH T A T, JOHARI A, et al. Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: A review[J/OL]. Frontiers in Energy, 2020, 14(3): 545[2021-11-10]. https://doi.org/10.1007/s11708-020-0800-2. |
13 | SAID M , CASSAYRE L , DIRION J , et al. Influence of nickel on biomass pyro-gasification: Coupled thermodynamic and experimental investigations[J]. Industrial & Engineering Chemistry Research, 2018, 57 (30): 9788- 9797. |
14 | 武宏香, 赵增立, 张伟, 等. 碱/碱土金属对纤维素热解特性的影响[J]. 农业工程学报, 2012, 28 (4): 215- 220. |
WU H X , ZHAO Z L , ZHANG W , et al. Effects of alkali/alkaline earth metals on pyrolysis properties of cellulose[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28 (4): 215- 220. | |
15 | 刘琨琨. 基于白云石负载铁铈催化剂生物质催化气化实验研究[D]. 包头: 内蒙古科技大学, 2020. |
LIU K K. Experimental research on biomass catalytic gasification based on Fe-Ce/Dol catalyst[D]. Baotou: Inner Mongolia University of Science and Technology, 2020. | |
16 | JIANG M , HU J , WANG J . Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char: Effect of hydrothermal pretreatment[J]. Fuel, 2013, 109, 14- 20. |
17 | PERANDER M , DEMARTINI N , BRINK A , et al. Catalytic effect of Ca and K on CO2 gasification of spruce wood char[J]. Fuel, 2015, 150, 464- 472. |
18 | 曾志伟. 碱金属K对生物质水蒸气催化气化增强制氢特性影响研究[D]. 武汉: 华中科技大学, 2016. |
ZENG Z W. Influence of potassium salts on hydrogen production from the enhanced steam gasification of biomass[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
19 | SU S , CHI Y Q , CHANG R X , et al. Analysis of the catalytic steam gasification mechanism of biomass[J]. International Journal of Hydrogen Energy, 2015, 40 (2): 935- 940. |
20 | ESFAHANI R A M , OSMIERI L , SPECCHIA S , et al. H2-rich syngas production through mixed residual biomass and HDPE waste via integrated catalytic gasification and tar cracking plus bio-char upgrading[J]. Chemical Engineering Journal, 2017, 308, 578- 587. |
21 | 张丽奇. 基于新型复合催化剂的生物质催化热解实验研究[D]. 包头: 内蒙古科技大学, 2019. |
ZHANG L Q. Experimental study on catalytic pyrolysis of biomass based on novel composite catalyst[D]. Baotou: Inner Mongolia University of Science and Technology, 2019. | |
22 | YANG L M , LYU P M , YUAN Z H , et al. Synthesis of biodiesel by different carriers supported KOH catalyst[J]. Advanced Materials Research, 2012, 581/582, 197- 201. |
23 | KIM J H, LEE G, PARK J E, et al. Limitation of K2CO3 as a chemical agent for upgrading activated carbon[J/OL]. Processes, 2021, 9(6): 1000[2021-11-10]. https://doi.org/10.3390/pr9061000. |
24 | WU X M, ZHU F F, QI J J, et al. Challenge of biodiesel production from sewage sludge catalyzed by KOH, KOH/activated carbon, and KOH/CaO[J/OL]. Frontiers of Environmental Science & Engineering, 2017, 11(2): 3[2021-11-10]. https://doi.org/10.1007/s11783-017-0913-y. |
25 | YAN F , ZHANG L G , HU Z Q , et al. Hydrogen-rich gas production by steam gasification of char derived from cyanobacterial blooms(CDCB) in a fixed-bed reactor: Influence of particle size and residence time on gas yield and syngas composition[J]. International Journal of Hydrogen Energy, 2010, 35 (19): 10212- 10217. |
26 | RICHARDSON Y , DROBEK M , JULBE A , et al. Biomass gasification to produce syngas[J]. Biomass Gasifiers for Syngas Production, 2015, (1): 209- 247. |
27 | 王永刚, 谢克昌, 凌开来, 等. 碱金属催化剂在煤气化过程中的作用机理[J]. 太原工业大学学报, 1988, (3): 52- 62. |
WANG Y G , XIE K C , LIN K L , et al. Mechanism of alkali metal catalyst in coal gasification process[J]. Journal of Taiyuan University of Technology, 1988, (3): 52- 62. | |
28 | DU C S , LIU L , QIU P H . Variation of char reactivity during catalytic gasification with steam: Comparison among catalytic gasification by ion-exchangeable Na, Ca, and Na/Ca mixture[J]. Energy & Fuels, 2018, 32 (1): 142- 153. |
29 | S′PIEWAK K, CZERSKI G, PORADA S. Effect of K, Na and Ca-based catalysts on the steam gasification reactions of coal. Part Ⅱ: Composition and amount of multi-component catalysts[J/OL]. Chemical Engineering Science, 2021, 229: 116023[2021-11-10]. https://doi.org/10.1016/j.ces.2020.116023. |
[1] | CHENG Qin, SHEN Juanzhang, CAI Yanyan, YE Jun, WU Ziyang, TAN Weihong. Carbon Stable Isotope Fractionation of 5-Hydroxymethylfurfural from Hydrothermal Liquefaction [J]. Chemistry and Industry of Forest Products, 2023, 43(1): 63-71. |
[2] | ZHENG Yunwu, WANG Jida, LI Donghua, LIU Can, DING Zhangshuai, ZHENG Zhifeng. A Review on Recent Advances in Catalytic Conversion of Biomass for Selective Production of Bio-aviation Fuels [J]. Chemistry and Industry of Forest Products, 2023, 43(1): 140-154. |
[3] | Xueqin LI, Peng LIU, Youqing WU, Tingzhou LEI, Shiyong WU, Sheng HUANG. Development Status and Prospect of Biomass Gasification Technology [J]. Chemistry and Industry of Forest Products, 2022, 42(5): 113-121. |
[4] | Shuo WANG, Yonggui WANG, Zefang XIAO, Yanjun XIE. Recent Progress in Preparation and Application of Bio-based Hydrogels [J]. Chemistry and Industry of Forest Products, 2022, 42(5): 122-136. |
[5] | Fang WANG, Hongdan ZHANG. Application of Aspen Plus in Lignocellulosic Biomass Pretreatment for Ethanol Production: A Review [J]. Chemistry and Industry of Forest Products, 2022, 42(4): 119-130. |
[6] | Shuai WANG, Xing TANG, Yong SUN, Xianhai ZENG, Lu LIN. Optimization and Kinetics of Hydrolysis of 5-Chloromethylfurfural to 5-Hydroxymethylfurfural [J]. Chemistry and Industry of Forest Products, 2022, 42(3): 65-74. |
[7] | Yifei DU, Yue PU, Liping ZHANG, Qiang ZHAO, Xianliang SONG. Power Generation Performance of Lignin in Direct Biomass Fuel Cell [J]. Chemistry and Industry of Forest Products, 2022, 42(3): 75-82. |
[8] | Yuxin LU, Lingang LU. Thermal Properties and Thermal Decomposition Kinetics of Tannic Acid [J]. Chemistry and Industry of Forest Products, 2022, 42(3): 83-89. |
[9] | Yupeng LIU, Peipei KUANG, Ying CHEN, Jifu WANG, Chunpeng WANG, Fuxiang CHU. Research Progress of Biomass-based Stimulus-responsive Hydrogels [J]. Chemistry and Industry of Forest Products, 2022, 42(3): 126-134. |
[10] | Tingting YU, Zongze LYU, Xiang LI, Jindong HU, Peiyan LI, Zhiguo LI. Preparation and Electrochemical Properties of Bamboo Based Ultra-thick Carbonaceous Electrode Materials [J]. Chemistry and Industry of Forest Products, 2022, 42(2): 10-18. |
[11] | Xing LIU, Zhu YIN, Beili LU, Fengzhen WU, Biao HUANG. Preparation of Biomass-derived Fe-N-C Porous Carbon Material and Its Catalytic Reduction of Nitrobenzene [J]. Chemistry and Industry of Forest Products, 2022, 42(2): 63-70. |
[12] | Qin WANG, Hongmei WANG, Aihua ZHANG, Zhihong XIAO, Changzhu LI. KNO3-Loaded Mesoporous Carbon Catalyzed Transesterification Reaction of Cornus wilsoniana Oil [J]. Chemistry and Industry of Forest Products, 2021, 41(6): 83-89. |
[13] | Mengyu LI, Peng YANG, Chun CHANG, Zhiyong CHEN, Jiande SONG. Research Progress in High-value Utilization of Furfural Residue [J]. Chemistry and Industry of Forest Products, 2021, 41(6): 117-126. |
[14] | Haonan CHEN, Ting YU, Yali ZHOU, Xiping LEI, Xiaolin GUAN. Research Progress on Electrode Materials from Activated Carbon-based Supercapacitors [J]. Chemistry and Industry of Forest Products, 2021, 41(5): 113-125. |
[15] | Hengyi SHU, Zhifeng ZHENG, Shouqing LIU, Hongzhou HE, Yuanbo HUANG. Effect Mechanism of Substrates on Cross-metathesis Reaction for Preparation of Long-chain Terminal Olefin Chemicals from Methyl Oleate [J]. Chemistry and Industry of Forest Products, 2021, 41(3): 11-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||