Chemistry and Industry of Forest Products ›› 2023, Vol. 43 ›› Issue (1): 140-154.doi: 10.3969/j.issn.0253-2417.2023.01.018
Yunwu ZHENG1(), Jida WANG1, Donghua LI1, Can LIU1, Zhangshuai DING1, Zhifeng ZHENG1,2,*(
)
Received:
2021-11-10
Online:
2023-02-28
Published:
2023-02-28
Contact:
Zhifeng ZHENG
E-mail:zyw85114@163.com;zhengzhifeng666@163.com
CLC Number:
Yunwu ZHENG, Jida WANG, Donghua LI, Can LIU, Zhangshuai DING, Zhifeng ZHENG. A Review on Recent Advances in Catalytic Conversion of Biomass for Selective Production of Bio-aviation Fuels[J]. Chemistry and Industry of Forest Products, 2023, 43(1): 140-154.
Table 1
Composition and physicochemical properties of bio-based aviation fuels and fossil aviation fuels"
性能指标 properties index | 化石基 fossil-based | 生物基 bio-based | |||||
Jet A | JP-8 | RP-3 | FT-SPK | HEFA-SPK | ATJ | ||
烷烃 alkane/% | 68.2 | 60.0 | 53.0 | 98.74 | 88.95 | 99.62 | |
环烷烃 cycloalkanes/% | 6.3 | 20.0 | 37.7 | 0.62 | 11.05 | 0.05 | |
芳香烃 aromatic hydrocarbon/% | 25.5 | 18.0 | 4.6 | 0.64 | 0 | <0.01 | |
烯烃 olefin/% | — | 2.0 | 2.0 | — | — | ||
其他烃类 other hydrocarbons/% | — | — | 2.7 | 0.5 | 0.5 | — | |
自燃温度 autoignition temperature/℃ | >425 | — | 380-425 | — | — | ||
闪点 flash point/℃ | 48 | 42 | 47 | 42 | 43 | 50 | |
沸点 boiling point/℃ | — | — | 185 | — | — | ||
凝固点 freezing point/℃ | -40 | -48.5 | -60 | 40 | 40 | — | |
烟点 smoke point/mm | 22.0 | 28.5 | 24.6 | 38.0 | 50.0 | 34.5 | |
15 ℃下密度 density at 15 ℃/(kg·m-3) | 803 | 780 | 790 | 761 | 751 | 760 | |
-20 ℃下的黏度 viscosity at -20 ℃/(mm2·s-1) | 4.5 | 3.5 | 1.814 | 3.4 | 3.3 | 5.0 | |
热值 calorific value/(MJ·kg-1) | 43.0 | 43.1 | 43.2 | 43.9 | 44.3 | 43.88 | |
理想空燃比 ideal air-fuel ratio | — | — | 16 | — | — | ||
十六烷值 cetane number | 48.3 | 48.8 | 43.0 | 31.3 | 53.9 | 17.1 |
Table 2
Catalytic conversion of different oil to bio-aviation fuel"
原料 raw material | 温度/℃ temp. | 催化剂 catalyst | 主要产物1) product composition | 转化率/% conversion ratio | 产率/% yield | 文献 ref. |
大豆油 soybean oil | 390 | Ni-Mo/HY | 烷烃和芳烃 alkanes and aromatics | 95 | 48.2 | [ |
麻风树油 jatropha oil | 300 | W-Pt/TiO2 | C15,C17 AH | 86 | 86.0 | [ |
棕榈油 palm oil | 330 | Ni-MoS2/γ-Al2O3 | C10-C12 AH | >95 | 92.0 | [ |
椰子油 coconut oil | 350 | Mo-Ni/γ-Al2O3 | C11-C12 AH | 97 | 94.0 | [ |
蓖麻油 castor oil | 360 | NiAg/SAPO-11 | C8-C15 AH | 98 | 91.6 | [ |
微藻油 microalgae oil | 330 | Pt-Re/SiO2-Al2O3 | C10-C20 AH | 100 | — | [ |
海藻油 algal oil | 400 | NiO-CoO-MoO | 烷烃和烯烃 alkanes and aromatics | >99 | 100 | [ |
废旧油脂 waste oil | 400 | Ni/Meso-Y | C15,C17 AH | 89.6 | 51.8 | [ |
废食用油 waste cooking oil | 300 | Ni2P/AC | C15-C19 AH | — | 77.4 | [ |
硬脂酸 stearic acid | 325 | Pd/HZSM-5 | C5-C12碳氢化合物 hydrocarbon | 100 | — | [ |
油酸 oleic acid | 330 | NiMo/γ-Al2O3 | C8-C18烷烃和烯烃 alkanes and aromatics | 71.0 | — | [ |
1 | WANG H, YANG B, ZHANG Q, et al. Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons[J/OL]. Renewable and Sustainable Energy Reviews, 2020, 12: 109612[2021-10-20]. https://doi.org/10.1016/j.rser.2019.109612. |
2 | RASHEED T, ANWAR M T, AHMAD N, et al. Valorisation and emerging perspective of biomass based waste-to-energy technologies and their socio-environmental impact: A review[J/OL]. Journal of Environmental Management, 2021, 287: 112257[2021-10-20]. https://doi.org/10.1016/j.jenvman.2021.112257. |
3 | SOLARTE-TORO J C, GONZALEZ-AGUIRRE J A, GIRALDO J P, et al. Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading[J/OL]. Renewable and Sustainable Energy Reviews, 2021, 136: 110376[2021-10-20]. https://doi.org/10.1016/j.rser.2020.110376. |
4 | HONG C, LI Y, SI Y, et al. Catalytic upgrading of penicillin fermentation residue bio-oil by metal-supported HZSM-5[J/OL]. Science of the Total Environment, 2021, 767: 144977[2021-10-20]. https://doi.org/10.1016/j.scitotenv.2021.144977. |
5 | TAWALBEH M, AL-OTHMAN A, SALAMAH T, et al. A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials[J/OL]. Journal of Environmental Management, 2021, 299: 113597[2021-10-20]. https://doi.org/10.1016/j.jenvman.2021.113597. |
6 |
PATTANAIK B P , MISRA R D . Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 73, 545- 557.
doi: 10.1016/j.rser.2017.01.018 |
7 | KIMÉNÉ A , WOJCIESZAK R , PAUL S , et al. Catalytic decarboxylation of fatty acids to hydrocarbons over non-noble metal catalysts: The state of the art[J]. Journal of Chemical Technology & Biotechnology, 2019, 94 (3): 658- 669. |
8 | MARTINEZ-VALENCIA L, CAMENZIND D, WIGMOSTA M, et al. Biomass supply chain equipment for renewable fuels production: A review[J/OL]. Biomass and Bioenergy, 2021, 148: 106054[2021-10-20]. https://doi.org/10.1016/j.biombioe.2021.106054. |
9 |
陈佳慧, 王斐菲, 张乃丽, 等. 生物航油的制备与应用发展前景[J]. 能源研究与利用, 2021, 4, 21- 31.
doi: 10.3969/j.issn.1001-5523.2021.04.005 |
CHEN J H , WANG F F , ZHANG N L , et al. Preparation, application and development prospect of bio-aviation fuel[J]. Energy Research & Utilization, 2021, 4, 21- 31.
doi: 10.3969/j.issn.1001-5523.2021.04.005 |
|
10 |
GUTIERREZ-ANTONIO C , GOMEZ-CASTRO F I , DE LIRA-FLORES J A , et al. A review on the production processes of renewable jet fuel[J]. Renewable and Sustainable Energy Reviews, 2017, 79, 709- 729.
doi: 10.1016/j.rser.2017.05.108 |
11 |
SALADINI F , PATRIZI N , PULSELLI F M , et al. Guidelines for emergy evaluation of first, second and third generation biofuels[J]. Renewable and Sustainable Energy Reviews, 2016, 66, 221- 227.
doi: 10.1016/j.rser.2016.07.073 |
12 |
CHIARAMONTI D , PRUSSI M , BUFFI M , et al. Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels[J]. Applied Energy, 2014, 136, 767- 774.
doi: 10.1016/j.apenergy.2014.08.065 |
13 |
ZHU L D , XU Z B , QIN L , et al. Oil production from pilot-scale microalgae cultivation: An economics evaluation[J]. Energy Sources, Part B: Economics, Planning, and Policy, 2016, 11 (1): 11- 17.
doi: 10.1080/15567249.2015.1052594 |
14 |
CHIAPPERO M , DO P T M , CROSSLEY S , et al. Direct conversion of triglycerides to olefins and paraffins over noble metal supported catalysts[J]. Fuel, 2011, 90 (3): 1155- 1165.
doi: 10.1016/j.fuel.2010.10.025 |
15 |
XU J , LONG F , JIANG J , et al. Integrated catalytic conversion of waste triglycerides to liquid hydrocarbons for aviation biofuels[J]. Journal of Cleaner Production, 2019, 222, 784- 792.
doi: 10.1016/j.jclepro.2019.03.094 |
16 | ALEXANDER A, RYAN D, SANDEEP K. Catalytic transfer hydrogenation and characterization of flash hydrolyzed microalgae into hydrocarbon fuels production(jet fuel)[J/OL]. Fuel, 2020, 261: 116440[2021-10-20]. https://doi.org/10.1016/j.fuel.2019.116440. |
17 |
CHENG J , LI T , HUANG R , et al. Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality[J]. Bioresource Technology, 2014, 158, 378- 382.
doi: 10.1016/j.biortech.2014.02.112 |
18 |
ROMERO M J A , PIZZI A , TOSCANO G , et al. Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels[J]. Waste Management, 2016, 47, 62- 68.
doi: 10.1016/j.wasman.2015.03.033 |
19 |
ITTHIBENCHAPONG V , SRIFA A , KAEWMEESRI R , et al. Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS2/γ-Al2O3 catalysts[J]. Energy Conversion and Management, 2017, 134, 188- 196.
doi: 10.1016/j.enconman.2016.12.034 |
20 |
KIMURA T , IMAI H , LI X , et al. Hydroconversion of triglycerides to hydrocarbons over Mo-Ni/γ-Al2O3 catalyst under low hydrogen pressure[J]. Catalysis Letters, 2013, 143 (11): 1175- 1181.
doi: 10.1007/s10562-013-1047-x |
21 |
LIU S Y , ZHU Q Q , GUAN Q X , et al. Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts[J]. Bioresource Technology, 2015, 183, 93- 100.
doi: 10.1016/j.biortech.2015.02.056 |
22 | MURATA K , LIU Y , WATANABE M M , et al. Hydrocracking of algae oil into aviation fuel-range hydrocarbons using a Pt-Re catalyst[J]. Energy & Fuels, 2014, 28 (11): 6999- 7006. |
23 |
LI T , CHENG J , HUANG R , et al. Conversion of waste cooking oil to jet biofuel with nickel-based mesoporous zeolite Y catalyst[J]. Bioresource Technology, 2015, 197, 289- 294.
doi: 10.1016/j.biortech.2015.08.115 |
24 | TOMASEK S, VARGA Z, HANCSOK J. Production of jet fuel from cracked fractions of waste polypropylene and polyethylene[J/OL]. Fuel Processing Technology, 2020, 197: 106197[2021-10-20]. https://doi.org/10.1016/j.fuproc.2019.106197. |
25 | ARROYO M, BRIONES L, SERRANO D P, et al. Conversion of stearic acid into bio-gasoline over Pd/ZSM-5 catalysts with enhanced accessibility[J/OL]. Applied Sciences, 2019, 9(11): 2386[2021-10-20]. https://doi.org/10.3390/app9112386. |
26 |
KROBKRONG N , ITTHIBENCHAPONG V , KHONGPRACHA P , et al. Deoxygenation of oleic acid under an inert atmosphere using molybdenum oxide-based catalysts[J]. Energy Conversion and Management, 2018, 167, 1- 8.
doi: 10.1016/j.enconman.2018.04.079 |
27 |
HARI T K , YAAKOB Z . Production of diesel fuel by the hydrotreatment of jatropha oil derived fatty acid methyl esters over γ-Al2O3 and SiO2 supported NiCo bimetallic catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116 (1): 131- 145.
doi: 10.1007/s11144-015-0874-8 |
28 | LU M, LIU X, LI Y, et al. Hydrocracking of bio-alkanes over Pt/Al-MCM-41 mesoporous molecular sieves for bio-jet fuel production[J/OL]. Journal of Renewable and Sustainable Energy, 2016, 8(5): 053103[2021-10-20]. https://doi.org/10.1063/1.4962561. |
29 |
ZHANG X , LEI H , ZHU L , et al. From plastics to jet fuel range alkanes via combined catalytic conversions[J]. Fuel, 2017, 188, 28- 38.
doi: 10.1016/j.fuel.2016.10.015 |
30 |
HUBER G W , CHHEDA J N , BARRETT C J , et al. Production of liquid alkanes by aqueous-phase processing of biomass derived carbohydrates[J]. Science, 2005, 308, 1446- 1450.
doi: 10.1126/science.1111166 |
31 |
LIU Y , LI G , HU Y , et al. Integrated conversion of cellulose to high-density aviation fuel[J]. Joule, 2019, 3 (4): 1028- 1036.
doi: 10.1016/j.joule.2019.02.005 |
32 |
BI P , WANG J , ZHANG Y , et al. From lignin to cycloparaffins and aromatics: Directional synthesis of jet and diesel fuel range biofuels using biomass[J]. Bioresource Technology, 2015, 183, 10- 17.
doi: 10.1016/j.biortech.2015.02.023 |
33 | 张琦, 李宇萍, 陈伦刚, 等. 百吨/年规模生物质水相合成航油类烃过程的物质与能量转化[J]. 天津大学学报(自然科学与工程技术版), 2017, 50 (1): 13- 16. |
ZHANG Q , LI Y P , CHEN L G , et al. Material and energy conversion of integrated 100t/a-scale bio-jet fuel-range hydrocarbon production system via aqueous conversion of biomass[J]. Journal of Tianjin University(Science and Technology), 2017, 50 (1): 13- 16. | |
34 |
LI Y , CHEN L , ZHANG X , et al. Process and techno-economic analysis of bio-jet fuel-range hydrocarbon production from lignocellulosic biomass via aqueous phase deconstruction and catalytic conversion[J]. Energy Procedia, 2017, 105, 675- 680.
doi: 10.1016/j.egypro.2017.03.374 |
35 |
LIMA C G S , MONTEIRO J L , LIMA T D , et al. Angelica lactones: From biomass-derived platform chemicals to value-added products[J]. ChemSusChem, 2018, 11 (1): 25- 47.
doi: 10.1002/cssc.201701469 |
36 | MARISCAL R , MAIRELES-TORRES P , OJEDA M , et al. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy & Environmental Science, 2016, 9 (4): 1144- 1189. |
37 |
CHHEDA J N , HUBER G W , DUMESIC J A . Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J]. Angewandte Chemie International Edition, 2007, 46 (38): 7164- 7183.
doi: 10.1002/anie.200604274 |
38 |
仇松柏, 翁育靖, 蔡建坤, 等. 山梨醇水相芳构化转化为航空燃料范围内的碳氢化合物[J]. 可再生能源, 2017, 35 (6): 791- 797.
doi: 10.3969/j.issn.1671-5292.2017.06.001 |
QIU S B , WENG Y J , CAI J K . Production of renewable aviation fuel range hydrocarbons from sorbitol using aqueous phase aromatization[J]. Renewable Energy Resources, 2017, 35 (6): 791- 797.
doi: 10.3969/j.issn.1671-5292.2017.06.001 |
|
39 | 陈伦刚, 马隆龙, 张兴华, 等. 一种糖平台化合物制备航空燃料用的长链烷烃的方法: CN201510065327. 1[P]. 2017-01-11. |
CHEN L G, MA L L, ZHANG X H, et al. A method of preparing long chain alkanes for aviation fuel from sugar-derived platform compounds: CN201510065327. 1[P]. 2017-01-11. | |
40 | 王霏, 徐俊明, 蒋剑春, 等. 油脂加氢制备生物柴油用催化剂的研究进展[J]. 材料导报, 2018, 32 (5): 765- 771. |
WANG F , XU J M , JIANG J C , et al. Advance in catalysts applied to bio-diesel production from oil hydrotreatment[J]. Materials Reports, 2018, 32 (5): 765- 711. | |
41 | ZHANG Z, CHENG J, ZHU Y, et al. Jet fuel range hydrocarbons production through competitive pathways of hydrocracking and isomerization over HPW-Ni/MCM-41 catalyst[J/OL]. Fuel, 2020, 269: 117465[2021-10-20]. https://doi.org/10.1016/j.fuel.2020.117465. |
42 |
PAPAGERIDIS K N , CHARISIOU N D , DOUVARTZIDES S , et al. Promoting effect of CaO-MgO mixed oxide on Ni/γ-Al2O3 catalyst for selective catalytic deoxygenation of palm oil[J]. Renewable Energy, 2020, 162, 1793- 1810.
doi: 10.1016/j.renene.2020.09.133 |
43 |
WANG H , RUAN H , PEI H , et al. Biomass-derived lignin to jet fuel range hydrocarbons via aqueous phase hydrodeoxygenation[J]. Green Chemistry, 2015, 17 (12): 5131- 5135.
doi: 10.1039/C5GC01534K |
44 | LIU M, SHI Y, WU K, et al. Upgrading of palmitic acid and hexadecanamide over Co-based catalysts: Effect of support(SiO2, γ-Al2O3 and H-ZSM-22)[J/OL]. Catalysis Communications, 2019, 129: 105726[2021-10-20]. https://doi.org/10.1016/j.catcom.2019.105726. |
45 | POUR A N , ZARE M , SHAHRI S M K , et al. Catalytic behaviors of bifunctional Fe-HZSM-5 catalyst in Fischer-Tropsch synthesis[J]. Journal of Natural Gas Science and Engineering, 2019, 1 (6): 183- 189. |
46 | WANG J X , CAO J P , ZHAO X Y , et al. In situ upgrading of cellulose pyrolysis volatiles using hydrofluorinated and platinum-loaded HZSM-5 for high selectivity production of light aromatics[J]. Industrial & Engineering Chemistry Research, 2019, 58 (49): 22193- 22201. |
47 |
MADSEN A T , CHRISTENSEN C H , FEHRMANN R , et al. Hydrodeoxygenation of waste fat for diesel production: Study on model feed with Pt/alumina catalyst[J]. Fuel, 2011, 90 (11): 3433- 3438.
doi: 10.1016/j.fuel.2011.06.005 |
48 |
RABAEV M , LANDAU M V , VIDRUK-NEHEMYA R , et al. Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics[J]. Fuel, 2015, 161, 287- 294.
doi: 10.1016/j.fuel.2015.08.063 |
49 |
KIM S K , HAN J Y , HONG S A , et al. Supercritical CO2-purification of waste cooking oil for high-yield diesel-like hydrocarbons via catalytic hydrodeoxygenation[J]. Fuel, 2013, 111, 510- 518.
doi: 10.1016/j.fuel.2013.03.080 |
50 |
VERIANSYAH B , HAN J Y , KIM S K , et al. Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts[J]. Fuel, 2012, 94, 578- 585.
doi: 10.1016/j.fuel.2011.10.057 |
51 |
CHEAH K W , TAYLOR M J , OSATIASHTIANI A , et al. Monometallic and bimetallic catalysts based on Pd, Cu and Ni for hydrogen transfer deoxygenation of a prototypical fatty acid to diesel range hydrocarbons[J]. Catalysis Today, 2020, 355, 882- 892.
doi: 10.1016/j.cattod.2019.03.017 |
52 | DE S , ZHANG J , LUQUE R , et al. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications[J]. Energy & Environmental Science, 2016, 9 (11): 3314- 3347. |
53 |
ZHENG Y , WANG J , LIU C , et al. Efficient and stable Ni-Cu catalysts for ex situ catalytic pyrolysis vapor upgrading of oleic acid into hydrocarbon: Effect of catalyst support, process parameters and Ni-to-Cu mixed ratio[J]. Renewable Energy, 2020, 154, 797- 812.
doi: 10.1016/j.renene.2020.03.058 |
54 |
KUMAR P , MAITY S K , SHEE D . Role of NiMo alloy and Ni species in the performance of NiMo/alumina catalysts for hydrodeoxygenation of stearic acid: A kinetic study[J]. ACS Omega, 2019, 4 (2): 2833- 2843.
doi: 10.1021/acsomega.8b03592 |
55 |
SANKARANARAYANAN T M , BANU M , PANDURANGAN A , et al. Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites[J]. Bioresource Technology, 2011, 102 (22): 10717- 10723.
doi: 10.1016/j.biortech.2011.08.127 |
56 |
SULLIVAN M M , BHAN A . Acetone hydrodeoxygenation over bifunctional metallic-acidic molybdenum carbide catalysts[J]. ACS Catalysis, 2016, 6 (2): 1145- 1152.
doi: 10.1021/acscatal.5b02656 |
57 | WANG F, ZHANG W, JIANG J, et al. Nitrogen-rich carbon-supported ultrafine MoC nanoparticles for the hydrotreatment of oleic acid into diesel-like hydrocarbons[J/OL]. Chemical Engineering Journal, 2020, 382: 122464[2021-10-20]. https://doi.org/10.1016/j.cej.2019.122464. |
58 |
KIM S K , YOON D , LEE S C , et al. Mo2C/graphene nanocomposite as a hydrodeoxygenation catalyst for the production of diesel range hydrocarbons[J]. ACS Catalysis, 2015, 5 (6): 3292- 3303.
doi: 10.1021/acscatal.5b00335 |
59 |
CHEN W , LIN T , DAI Y , et al. Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts[J]. Catalysis Today, 2018, 311, 8- 22.
doi: 10.1016/j.cattod.2017.09.019 |
60 |
BERMUDEZ V , LUJAN J M , PLA B , et al. Comparative study of regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine fuelled with Fischer Tropsch and biodiesel fuels[J]. Biomass and Bioenergy, 2011, 35 (2): 789- 798.
doi: 10.1016/j.biombioe.2010.10.034 |
61 | MARTINELLI M, GNANAMANI M K, LEVINESS S, et al. An overview of Fischer-Tropsch Synthesis: XtL processes, catalysts and reactors[J/OL]. Applied Catalysis A: General, 2020, 608: 117740[2021-10-20]. https://doi.org/10.1016/j.apcata.2020.117740. |
62 |
LI J , YANG G , YONEYAMA Y , et al. Jet fuel synthesis via Fischer-Tropsch synthesis with varied 1-olefins as additives using Co/ZrO2-SiO2 bimodal catalyst[J]. Fuel, 2016, 171, 159- 166.
doi: 10.1016/j.fuel.2015.12.062 |
63 | LI X , HE J , MENG M , et al. One-step synthesis of H-β zeolite enwrapped Co/Al2O3 fischer-tropsch catalyst with high spatial selectivity[J]. Journal of Catalysis, 2008, 265 (1): 26- 34. |
64 |
LI J , HE Y , TAN L , et al. Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology[J]. Nature Catalysis, 2018, 1 (10): 787- 793.
doi: 10.1038/s41929-018-0144-z |
65 |
ZHOU W , CHENG K , KANG J , et al. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48 (12): 3193- 3228.
doi: 10.1039/C8CS00502H |
66 |
ANBARASAN P , BAER Z C , SREEKUMAR S , et al. Integration of chemical catalysis with extractive fermentation to produce fuels[J]. Nature, 2012, 491 (7423): 235- 239.
doi: 10.1038/nature11594 |
67 | KWON E E , KIM Y T , KIM H J , et al. Production of high-octane gasoline via hydrodeoxygenation of sorbitol over palladium-based bimetallic catalysts[J]. Journal of Environmental Management, 2018, 227, 329- 334. |
68 | 谭露璐, 钱君律, 伍艳辉. 羟醛缩合催化剂研究进展[J]. 化学工业与工程, 2006, 23 (1): 70- 74. |
TAN L L , QIAN J L , WU Y H . Advances in catalysts of aldol condensation[J]. Chemical Industry and Engineering, 2006, 23 (1): 70- 74. | |
69 | CORMA A , DE LA TORRE O , RENZ M . Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: Catalysts and process variables[J]. Energy & Environmental Science, 2012, 5 (4): 6328- 6344. |
70 | 吴丽丽, 安华良, 梁宁, 等. 羟醛缩合反应中酸碱双功能催化剂的研究进展[J]. 化学通报, 2014, 77 (2): 109- 114. |
WU L L , AN H L , LIANG N , et al. Advance in acid-base bifunctional catalysts for aldol condensation[J]. Chemistry, 2014, 77 (2): 109- 114. | |
71 |
ZHAN N , HU Y , LI H , et al. Lanthanum-hosphorous modified HZSM-5 catalysts in dehydration of ethanol to ethylene: A comparative analysis[J]. Catalysis Communications, 2010, 11 (7): 633- 637.
doi: 10.1016/j.catcom.2010.01.011 |
72 |
FENG S , WEI R , LEITCH M , et al. Comparative study on lignocellulose liquefaction in water, ethanol, and water/ethanol mixture: Roles of ethanol and water[J]. Energy, 2018, 155, 234- 241.
doi: 10.1016/j.energy.2018.05.023 |
73 |
ZHANG Y , BI P , WANG J , et al. Production of jet and diesel biofuels from renewable lignocellulosic biomass[J]. Applied Energy, 2015, 150, 128- 137.
doi: 10.1016/j.apenergy.2015.04.023 |
74 | SHAH Z , VESES R C , VAGHETTI J C , et al. Preparation of jet engine range fuel from biomass pyrolysis oil through hydrogenation and its comparison with aviation kerosene[J]. International Journal of Green Energy, 2019, 16 (4): 350- 360. |
75 | ZHANG Z W, WANG Q F, ZHANG X W. Hydroconversion of waste cooking oil into bio-jet fuel over NiMo/SBUY-MCM-41[J/OL]. Catalysts, 2019, 9(5): 466[2021-10-20]. https://doi.org/10.3390/catal9050466. |
76 | 张旭, 陈玉保, 高燕妮, 等. 麻疯树油一步加氢催化制备生物航空煤油[J]. 中国油脂, 2018, 43 (1): 48- 51. |
ZHANG X , CHEN Y B , GAO Y N , et al. Preparation of bio-aviation kerosene from Jatropha oil by one-step hydrogenation[J]. China Oils and Fats, 2018, 43 (1): 48- 51. | |
77 | SANTILLAN-JIMENEZ E , MORGAN T , LACNY J , et al. Catalytic deoxygenation of triglycerides and fatty acids to hydrocarbons over carbon-supported nickel[J]. Fuel, 2013, 103, 1010- 1017. |
78 | PENG B , YUAN X , ZHAO C , et al. Stabilizing catalytic pathways via redundancy: Selective reduction of microalgae oil to alkanes[J]. Journal of the American Chemical Society, 2012, 134 (22): 9400- 9405. |
79 | 李睿帆, 陈玉保, 赵永彦, 等. Pd-Al2O3-BEA催化麻疯树油制航空煤油的工艺优化[J]. 生物质化学工程, 2021, 55 (3): 55- 61. |
LI R F , CHEN Y B , ZHAO Y Y , et al. Response surface optimization of preparation of aviation kerosene from jatropha oil catalyzed by Pd-Al2O3-BEA[J]. Biomass Chemical Engineering, 2021, 55 (3): 55- 61. | |
80 | LI S , LI N , LI G , et al. Lignosulfonate-based acidic resin for the synthesis of renewable diesel and jet fuel range alkanes with 2-methylfuran and furfural[J]. Green Chemistry, 2015, 17 (6): 3644- 3652. |
81 | LI L P, FANG Z, KONG X, et al. Synthesis of jet fuel intermediates via aldol condensation of biomass-derived furfural with lanthanide catalyst[J/OL]. Molecular Catalysis, 2021, 515: 111893[2021-10-20]. https://doi.org/10.1016/j.mcat.2021.111893. |
82 | 齐学振, 谢敏慧, 林绍杰, 等. K+/CaO催化糠醛与甲基异丁基酮缩合制备生物航空燃料中间体[J]. 林产化学与工业, 2016, 36 (6): 35- 40. |
QI X Z , XIE M H , LIN S J , et al. Production of bio-aviation fuel intermediate by aldol condensation of furfural and methyl isobutyl ketone over K+/CaO[J]. Chemistry and Industry of Forest Products, 2016, 36 (6): 35- 40. | |
83 | XIN J , ZHANG S , YAN D , et al. Formation of C—C bonds for the production of bio-alkanes under mild conditions[J]. Green Chemistry, 2014, 16 (7): 3589- 3595. |
84 | 陈伦刚, 张兴华, 张琦, 等. 木质纤维素解聚平台分子催化合成航油技术的进展[J]. 化工进展, 2019, 38 (3): 1269- 1282. |
CHEN L G , ZHANG X H , ZHANG Q , et al. Progress in aviation biofuel technology by catalysis synthesis of platform molecules from lignocelluloses depolymerization[J]. Chemical Industry and Engineering Progress, 2019, 38 (3): 1269- 1282. | |
85 | KARIMI E , TEIXEIRA I F , RIBEIRO L P , et al. Ketonization and deoxygenation of alkanoic acids and conversion of levulinic acid to hydrocarbons using a Red Mud bauxite mining waste as the catalyst[J]. Catalysis Today, 2012, 190 (1): 73- 88. |
86 | LI Z , ZHANG J , NIELSEN M M , et al. Efficient C—C bond formation between two levulinic acid molecules to produce C10 compounds with the cooperation effect of Lewis and Brønsted acids[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (5): 5708- 5711. |
87 | WANG F , XU H , YU S , et al. Fe-promoted Ni catalyst with extremely high loading and oxygen vacancy for lipid deoxygenation into green diesel[J]. Renewable Energy, 2022, 197, 40- 49. |
88 | LONG F , ZHAI Q , LIU P , et al. Catalytic conversion of triglycerides by metal-based catalysts and subsequent modification of molecular structure by ZSM-5 and Raney Ni for the production of high-value biofuel[J]. Renewable Energy, 2020, 157, 1072- 1080. |
[1] | Jurong REN, Yunhong SU, Yunjuan SUN, Hao YING, Zhongzhi YANG, Le XU. K/Ca Catalytic Steam Gasification of Sawdust for Production of Hydrogen-rich Syngas [J]. Chemistry and Industry of Forest Products, 2023, 43(1): 15-24. |
[2] | Qin CHENG, Juanzhang SHEN, Yanyan CAI, Jun YE, Ziyang WU, Weihong TAN. Carbon Stable Isotope Fractionation of 5-Hydroxymethylfurfural from Hydrothermal Liquefaction [J]. Chemistry and Industry of Forest Products, 2023, 43(1): 63-71. |
[3] | Xueqin LI, Peng LIU, Youqing WU, Tingzhou LEI, Shiyong WU, Sheng HUANG. Development Status and Prospect of Biomass Gasification Technology [J]. Chemistry and Industry of Forest Products, 2022, 42(5): 113-121. |
[4] | Shuo WANG, Yonggui WANG, Zefang XIAO, Yanjun XIE. Recent Progress in Preparation and Application of Bio-based Hydrogels [J]. Chemistry and Industry of Forest Products, 2022, 42(5): 122-136. |
[5] | Fang WANG, Hongdan ZHANG. Application of Aspen Plus in Lignocellulosic Biomass Pretreatment for Ethanol Production: A Review [J]. Chemistry and Industry of Forest Products, 2022, 42(4): 119-130. |
[6] | Shuai WANG, Xing TANG, Yong SUN, Xianhai ZENG, Lu LIN. Optimization and Kinetics of Hydrolysis of 5-Chloromethylfurfural to 5-Hydroxymethylfurfural [J]. Chemistry and Industry of Forest Products, 2022, 42(3): 65-74. |
[7] | Yifei DU, Yue PU, Liping ZHANG, Qiang ZHAO, Xianliang SONG. Power Generation Performance of Lignin in Direct Biomass Fuel Cell [J]. Chemistry and Industry of Forest Products, 2022, 42(3): 75-82. |
[8] | Yuxin LU, Lingang LU. Thermal Properties and Thermal Decomposition Kinetics of Tannic Acid [J]. Chemistry and Industry of Forest Products, 2022, 42(3): 83-89. |
[9] | Yupeng LIU, Peipei KUANG, Ying CHEN, Jifu WANG, Chunpeng WANG, Fuxiang CHU. Research Progress of Biomass-based Stimulus-responsive Hydrogels [J]. Chemistry and Industry of Forest Products, 2022, 42(3): 126-134. |
[10] | Tingting YU, Zongze LYU, Xiang LI, Jindong HU, Peiyan LI, Zhiguo LI. Preparation and Electrochemical Properties of Bamboo Based Ultra-thick Carbonaceous Electrode Materials [J]. Chemistry and Industry of Forest Products, 2022, 42(2): 10-18. |
[11] | Mengyu LI, Peng YANG, Chun CHANG, Zhiyong CHEN, Jiande SONG. Research Progress in High-value Utilization of Furfural Residue [J]. Chemistry and Industry of Forest Products, 2021, 41(6): 117-126. |
[12] | Wenjie ZHANG, Yubao CHEN, Ying LIU, Rui XU, Xingyong LI, Liangdong HU. One-step Hydrogenation of Castor Oil Catalyzed by Pt-La/SAPO-11 Catalyst for Preparing of Aviation Kerosene [J]. Chemistry and Industry of Forest Products, 2021, 41(5): 65-71. |
[13] | Haonan CHEN, Ting YU, Yali ZHOU, Xiping LEI, Xiaolin GUAN. Research Progress on Electrode Materials from Activated Carbon-based Supercapacitors [J]. Chemistry and Industry of Forest Products, 2021, 41(5): 113-125. |
[14] | Chongxin YIN, Min WANG, Jinlan CHENG, Huiyang BIAN, Weibing WU, Hongqi DAI. Research Progress of Application of Hydrotropes in Biorefinery [J]. Chemistry and Industry of Forest Products, 2021, 41(3): 134-140. |
[15] | Tingzhou LEI, Xiaofei XIN, Zaifeng LI, Jinping LI, Liya ZHANG. A Review of Torrefaction Pretreatment for Preparation Biomass Clean Briquette Fuels [J]. Chemistry and Industry of Forest Products, 2021, 41(2): 110-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||