Welcome to Chemistry and Industry of Forest Products,
Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
Synthesis of Methyleugenol with Dimethyl Carbonate as Methylating Agent
SUN Li-yuan;ZHU Kai
   2013, 33 (2): 139-143.   DOI: 10.3969/j.issn.0253-2417.2013.02.025
Abstract2195)      PDF(pc) (855KB)(975)       Save
Methyleugenol was prepared from eugenol in the presence of potassium carbonate (K 2CO 3), using dimethyl carbonate(DMC) as methylating agent instead of the conventional toxic agents. Using the yield of methyleugenol as the evalution index, central composite design process was used to optimize the methylation reaction of eugenol and DMC. An optimum reaction condition for the preparation of the targeted product was as follows, reaction temperature 155 ℃, the amount of K 2CO 3 6.12 %(mea-sured by the molar ratio of eugenol), the molar ratio of DMC and eugenol 4.3:1 and reaction time 6 h. Under this condition the conversion rate reached 96.16 %. Meanwhile, repeated experiments showed that the reaction process was easy to be controlled and excellent repetitiveness can be acquired. GC-MS and IR spectral analysis were employed to confirm the structure of the product.
Related Articles | Metrics
Myo-inositol Metamolism as the Precursor of Xylan and Pectin in Plants
ZHANG Meng;XIE Yi-min;YANG Hai-tao;YAO Lan
   2013, 33 (5): 106-114.   DOI: 10.3969/j.issn.0253-2417.2013.05.021
Abstract2061)      PDF(pc) (3794KB)(712)       Save
Inositol, known as cyclohexanehexol, has very important biological functions in the growth of plants. The myo-inositol is the most abundant isomer of inositol in plants which is formed by glucose cyclization catalyzed by hexokinase, myo-inositol-1-phosphate synthase and alkaline phosphatase. It takes part in some vital oxidation pathway in plants. Cell wall formation has a close relationship with the metabolism of myo-inositol. Xylan and pectin are important contents of cell wall polysaccharides can be formed by myo-inositol oxidation pathway. This provides important basis for the study of the linkage between xylan and pectin and lignin in plant cell wall by isotopic tracer method. This also contributes to the study of plant fiber chemistry and pulp and paper science.
Related Articles | Metrics
Research Progress in Biosynthesis of Anthocyanins
Qian XU,Chen ZHANG,Jiawei WU,Jia OUYANG
Chemistry and Industry of Forest Products    2020, 40 (3): 1-11.   DOI: 10.3969/j.issn.0253-2417.2020.03.001
Abstract1833)   HTML1967700927)    PDF(pc) (3662KB)(830)       Save

Anthocyanin is a kind of flavonoid which mainly exists in plants. It has strong biological activities such as anti-cancer and anti-oxidation, and is widely used in the field of nutrition and health care. Most anthocyanins are extracted directly from plants by physical or chemical means, but the yield is low, and the extracted anthocyanins are mostly mixtures due to the restrictions of time, region and season. Biosynthesis of anthocyanins have attracted much attention by researchers worldwide in recent years. As the biosynthesis of anthocyanins can be controlled artificially and the purity of the obtained products is high, it has been widely studied. Anthocyanins cannot exist stably in the environment, and need to be modified by glycosylation, acylation and methylation to increase their stability. The modified anthocyanins can be synthesized by microorganisms and significant color changes can be seen in the medium. The biosynthesis and modification of anthocyanins were reviewed in this paper, and the preparation technology of anthocyanin synthesis from plants and microorganisms was briefly introduced, the factors affecting anthocyanin synthesis were analyzed, and finally the future research direction of anthocyanin was predicted.

Table and Figures | Reference | Related Articles | Metrics
Thermal Stability of Gallic Acid
GUO Man-man;XIAO Zhuo-bing;PENG Mi-jun;YU Hua-zhong;GUO Rui-ke
   2012, 32 (4): 58-62.  
Abstract1732)      PDF(pc) (1074KB)(1259)       Save
Thermal decomposing curves of gallic acid in different heating speeds were obtained in the nitrogen atmosphere by TG-DTG techniques. Two analysis methods of Achar and Coats-Redfern were used to speculate the probable mechanism of thermal decomposing reaction and the kinetic parameters. The shelf life of gallic acid at room temperature was calculated by the kinetic parameters of the first stage. With the increasing of the heating rate, thermal decomposing tempreture of gallic acid rose. The most probable kinetic mechanisms of the three-stage thermal decomposition were all chemical reactions, and the corresponding mechanisms followed on reaction order. In accordance with the data of TG and Gaussian, one molecule of gallic acid lost 0.5 atom O at the fisrt-stage, and lost another 0.5 atom O and a molecule CO 2 at the second stage. The shelf life of gallic acid at room temperature was about 1.5-2 years.
Related Articles | Metrics
Review on Phosphoric Acid Activation for Preparation of Activated Carbon (Ⅰ):Roles of Phosphoric Acid
ZUO Songlin
Chemistry and Industry of Forest Products    2017, 37 (3): 1-9.   DOI: 10.3969/j.issn.0253-2417.2017.03.001
Abstract1725)      PDF(pc) (2451KB)(1034)       Save
Phosphoric acid activation is a principal method of the chemical activations to produce activated carbons, and has a history of around 30 years in the laboratory-scale investigation and the industrial application. In this article, the author systemically reviewed the roles that phosphoric acid played in the process of H 3PO 4 activation for the first time. From the chemical point of view, phosphoric acid played in promoting hydrolysis of biopolymers in lignocellulosic materials (1), catalyzing dehydration of biopolymers (2) and aromatization reaction of carbon atoms (3), initiating crosslink reaction with biopolymers (4), and evolution of pores (5). Moreover, three sequential stages were considered to be necessary for the deep incorporation of H 3PO 4 solution into the interior of botanic structures, which include fast diffusion, hydrolysis and post diffusion. Meantime, the roles that the activating agents play in H 3PO 4 activation and ZnCl 2 activation are compared.
Reference | Related Articles | Metrics
Application of Rosin in Wood Preservation
LI Shu-jun;NGUYEN Thi-thanh-hien;HAN Shi-yan;LI Jian
   2011, 31 (5): 117-121.  
Abstract1714)      PDF(pc) (962KB)(761)       Save
The present application of rosin in wood preservation includes reducing moisture absorption of wood, improving water-based wood preservatives fixation, and preparing active rosin derivatives to wood-decay fungi. Wood-decay resitance can be improved by high concentration rosin emulsion treatment. Rosin emulsion treatment at even a low concentration could well fix leachable copper salts in wood. Rosin amine and quaternary ammonium salt derivatives could protect wood from fungal attack. Effects of imidazoline and other bioactive derivatives need more tests.
Related Articles | Metrics
Study on Diels-Alder Reaction between β-Myrcene and Maleic Anhydride Catalyzed by SO 4 2-/TiO 2-ZrO 2 Solid Superacid
LUO Jin-yue;AN Xin-nan;LEI Fu-hou
   2007, 27 (6): 90-94.  
Abstract1677)      PDF(pc) (843KB)(841)       Save
Diels-Alder reaction between β-myrcene and maleic anhydride catalyzed by SO 4 2-/TiO 2-ZrO 2 solid superacid was investigated. By using GC, GC-MS and IR, main product in this reaction is confirmed to be 4-(4-methyl-3-pentenyl)-4-cyclohexene-1,2-dicarboxylic anhydride. The result shows that this catalyst has high catalytic activity and good selectivity to the Diels-Alder reaction between β-myrcene and maleic anhydride. The effects of catalyst to its catalytic activity are investigated. The result also shows that the optimum conditions for the preparation of SO 4 2-/TiO 2-ZrO 2 catalysts are as follows: n(Ti): n(Zr) 1:1, calcination temperature at 450℃. Under these conditions, the optimum conditions for the Diels-Alder reaction are as follows: n( β-myrcene): n(maleic anhydride) 1:1,reaction time 4 h, reaction temperature 60℃, and the ratio of solid superacids to β-myrcene mass part 1%, the β-myrcene conversion is 96.5%, and the 4-(4-methyl-3-pentenyl)-4-cyclohexene-1,2-dicarboxylic anhydride selectivity is 94.0%, or yield is 90.7%. Furthermore, the effect of storage time of the catalysts on the reaction and the experiments on regeneration of catalysts are carried out.
Related Articles | Metrics
Progress of Research on Preparation and Application of Nanocellulose Whiskers
LI Jin-ling;CHEN Guang-xiang;YE Dai-yong
   2010, 30 (2): 121-125.  
Abstract1493)      PDF(pc) (930KB)(3253)       Save
Advances of research on preparation, modification and application of nanocellulose whiskers(NCW) are reviewed. NCW are produced from natural cellulose by sulfuric-acid hydrolysis. Recent progress of research on hydrolysis process, preparation methods and conditions, characterization of properties of NCW, surface modification methods and the application of NCW in the fields of fine chemical and material science,etc. are mainly introduced.
Related Articles | Metrics
Progress on Preparation and Application of 5-Hydroxymethylfurfural
Si LU,Qiong WANG,Xun LI,Wei QI,Zhongming WANG,Zhenhong YUAN
Chemistry and Industry of Forest Products    2019, 39 (1): 13-22.   DOI: 10.3969/j.issn.0253-2417.2019.01.002
Abstract1487)   HTML190584)    PDF(pc) (786KB)(993)       Save

5-Hydroxymethylfurfural (HMF) is one of the most important biomass-based platform molecules and widely used in the preparation of multifunctional compounds such as fine chemicals, key pharmaceutical intermediates, functional polyesters, solvents and liquid fuels. At present, the preparation of HMF is a hot spot in the field of biomass research, and the raw materials and methods for preparing HMF have been continuously expanded. This paper reviews the main preparation methods and research progress of HMF. Catalysis systems for HMF preparation is systematically described, including the types of the catalysts (mineral acids, ionic liquids, metal chlorides, solid acids and others) used in the catalytic process and the solvent systems. Then, the preparation paths and applications of important derivatives from HMF are summarized. Finally, suggestions for future research on HMF are provided based on the understanding of problems existing in the current research.

Table and Figures | Reference | Related Articles | Metrics
Synthesis of Cinnamaldehyde Catalyzed by Solid Superbase Na 2CO 3/ γ-Al 2O 3
CHEN Lu;WANG Yi-wang;LUO Jin-yue;
   2013, 33 (6): 91-94.   DOI: 10.3969/j.issn.0253-2417.2013.06.017
Abstract1442)      PDF(pc) (1482KB)(729)       Save
Benzaldehyde is used as a raw material, to synthesize cinnamaldehyde from acetaldehyde in catalysis by aldol condensation reaction. The conditions of the catalytic reaction were discussed. The product was characterized by GC-MS,IR and 1H NMR. The results show that: When the catalyst is Na 2CO 3/ γ-Al 2O 3, the molar proportion of benzaldehyde and acetaldehyde is 1.3:1, the reaction temperature is 30 ℃, reaction time is 1 h, the amount of catalyst is 1 g (according to 11.6 g 40% acetaldehyde), the yield of cinnamaldehyde reaches 40.9%.
Related Articles | Metrics
JIANG Jian-chun
   2002, 22 (2): 75-80.  
Abstract1395)      PDF(pc) (619KB)(5064)       Save
Biomass energy is an important part of renewable energy.High effective utilization and development of biomass energy has positive effects on solving energy and environment problems.Since 1970's,in countries worldwide,especially in advanced countries,extra attentions have been paid to conduct researches on the application technique of biomass energy and a lot of research progress have been achieved,some of which have been used in industrial scale.In this paper,the progress of research and development in domestic and abroad,concerning biomass solidification,liquefaction,gasification and direct combustion technique,are summarized.According to our country's situation,proposals on research and development prospect are put forward.
Related Articles | Metrics
Optimization of Acid Hydrolysis Processing of Nanocellulose Crystal Using Response Surface Methodology
TANG Li-rong;OU Wen;LIN Wen-yi;CHEN Yan-dan;CHEN Xue-rong;HUANG Biao
   2011, 31 (6): 61-65.  
Abstract1390)      PDF(pc) (1278KB)(850)       Save
Nanocellulose crystal was prepared by sulfuric acid hydrolysis. The effects of sulfuric acid mass fraction, temperature and time on the yield of nanocellulose crystal were optimized with response surface methodology. The mathematical model was established using the Design-Expert software. The effect of various factors and their interactions were analyzed as well. The results showed that quadratic model was the best model to describe the relationship between the yield of nanocellulose crystal and the factors. The determination coefficient and adjusted determination coefficient were 99.31 % and 98.43 %, respectively. The interactions between sulfuric acid concentration and temperature, sulfuric acid concentration and time, temperature and time were significant. When sulfuric acid concentration, temperature and time corresponded to 54 %, 52 ℃ and 125 min, the yield of nanocellulose crystal would reach 69.31 %. It is the highest value in this investigation.
Related Articles | Metrics
Review on Preparation Technology of Activated Carbon and Its Application
JIANG Jianchun, SUN Kang
Chemistry and Industry of Forest Products    2017, 37 (1): 1-13.   DOI: 10.3969/j.issn.0253-2417.2017.01.001
Abstract1381)      PDF(pc) (2184KB)(1244)       Save
The domestic and international research progress of activated carbon production and application status in recent twenty years were reviewed. The development of chemical activation and physical activation of activated carbon were summarized, and the latest breakthrough on the integrated production process of physical and chemical activation was introduced. The pollution-free, low consumption and pretreatment production technology of activated carbon industrial production and the regeneration production technology of adsorption-saturated activated carbon were briefly described. Meanwhile, the research progresses of its application on gas adsorption, liquid adsorption and catalyst carrier were discussed, too. The existing problems of production and application technology of activated carbon were put forward, the development of activated carbon industry outlet and solutions were clarified, and the future research directions of activated carbon were further pointed out.
Reference | Related Articles | Metrics
A New Method for Preparation of Maleic Rosin Acid
LENG Fang;DUAN Wen-gui;XU Xue-tang;WEI Ting-ting;WANG Wei-kun;ZENG Yan-ping
   2011, 31 (5): 65-70.  
Abstract1357)      PDF(pc) (1185KB)(804)       Save
Maleic rosin acid was prepared using rosin and maleic anhydride as raw materials. Effects of different reaction conditions on the reaction were investigated by single factor experimentation, and the optimum conditions were found to be as follows: mole ratio of maleic anhydride to rosin 1.1∶1, reaction temperature 190 ℃, reaction time 4 h. The structure of maleopimaric acid anhydride was characterized by IR and single crystal X-ray diffraction. It was found that the configuration of maleopimaric acid anhydride was the classical type of diterpene compounds. The prepared maleic rosin was hydrolyzed and purified by potassium salt method to obtain maleic rosin acid with purity of 95.3% and yield of 81.5%. The structure of maleic rosin acid was verified by means of IR, 1H NMR, 13C NMR and MS.
Related Articles | Metrics
Chemical Composition of Leaf Essential Oil of Synsepalum dulcificum and Evaluation of Its Antibacterial and Antitumoral Activities in vitro
LU Sheng-lou LU Sheng-lou, LIU Hong, CHEN Guang-ying, HAN Chang-ri, ZANG Wen-xia
Chemistry and Industry of Forest Products    2014, 34 (1): 121-127.   DOI: 10.3969/j.issn.0253-2417.2014.01.021
Abstract1350)      PDF(pc) (939KB)(742)       Save
The aim of this study was to determine the chemical composition of Synsepalum dulcificum leaf essential oil obtained by steam distillation. The in vitro antibacterial activity and antitumoral activity of this essential oil was characterized. Sixty-eight compositions were separated. Among them 44 components were identified and represented 92.14% of the total detected constituents. The major chemical compounds of leaf essential oil were spathulenol (24.194%), limonene (15.805%), diisooctyl phthalate (12.402%), dibutyl phthalate (10.326%), palmitic acid (4.865%) and linalool (2.139%). The result of the antimicrobial assay showed that the essential oil displayed varying degrees of antibacterial activity against all tested bacterial except for Pseudomonas aeruginosa, along with minimum inhibition concentration(MIC)values from 39.06 to 252.15 mg/L. In addition, the antitumoral activity using MTT assay of the leaf essential oil exhibited this oil was effective against human K562 cancer cell line in a dose dependent manner. Its inhibition concentration 50% (IC 50) value was 13.5 mg/L.
Reference | Related Articles | Metrics
Process for Purification of Cinnamicaldehyde from Cinnamon Oil
ZHONG Chang-yong
   2009, 29 (6): 65-68.  
Abstract1336)      PDF(pc) (848KB)(722)       Save
A process for preparing cinnamaldehyde from cinnamon oil using vacuum distillation and molecular distillation was investigated. The optimum conditions of the process for obtaining high-purity and high-yield product were determined by analyzing the relative content of cinnamaldehyde with gas chromatography. The condition of vacuum distillation was as follows:pressure 1.333 kPa, temperature of total reflux 60-70℃, temperature of collecting the light component 60-100℃, temperature of collecting the middle component 90-115℃, temperature of collecting crude cinnamaldehyde 110-125℃, reflux ratio 2:1. Under these conditions, the purity and yield of the final product were 98.66% and 84.68%, respectively. The purity and yield reach 99.5% and 85.63% respectively after molecular distillation.
Related Articles | Metrics
Research Progress on Liriodenine
LIU Yan-cheng;CHEN Zhen-feng;PENG Yan;LIANG Hong
   2011, 31 (4): 109-116.  
Abstract1312)      PDF(pc) (1385KB)(677)       Save
The research progress on the phytochemistry, pharmacology, as well as antitumoral activity and mechanism of liriodenine was reviewed, which is a kind of typical oxoaporphine alkaloid. Liriodenine widely distributes in many natural plants of a series of families and genera, but the content is very low. Liriodenine exhibits extensive pharmacological activities, such as antitumoral, antibacterial, antifungal and trypanocidal activities, as well as anti-alzheimer's disease. It is seen that the significant antitumoral activity should be ascribed to the hyperconjugational planar structure of oxoaporphine as parent nucleus. Moreover, the pro-phase research progress as the rise of medicinal inorganic chemistry of liriodenine was also briefly introduced based on the authors' achieved research efforts. It could provide new strategy for the expanded research and application of liriodenine.
Related Articles | Metrics
New Synthesis Method of 1,8-Octanediol
KONG Ling-da;ZHENG Zhi-bing
   2011, 31 (1): 105-108.  
Abstract1305)      PDF(pc) (715KB)(589)       Save
A convenient and industrializable new method of synthesizing 1,8-octanediol was studied. 1,8-Octanedioic acid dimethyl ester was obtained at high yield, using hexamethylene dicyanide and methanol as raw material catalyzed by concentrated sulfuric acid, followed by the reduction of 1,8-octanedioic acid dimethyl ester via sodium borohydride in a NaBH 4-methanol-tetrahydrofuran solvent system to obtain 1,8-octanediol. Effects of the amount of NaBH 4 and reaction time on the overall yield of 1,8-octanediol were investigated. The optimum reaction conditions were as follows: molar ratio of NaBH 4 to 1,8-octanedioic acid dimethyl ester 5:5.1, reaction time 8.5h, the yield of 1,8-octanediol was 97.2%.
Related Articles | Metrics
Four Kinds of Pretreatment Methods for Lignocellulosics
MA Bin;CHU Qiu-lu;ZHU Jun-jun;OUYANG Jia;YU Shi-yuan;YONG Qiang
   2013, 33 (2): 25-30.   DOI: 10.3969/j.issn.0253-2417.2013.02.004
Abstract1302)      PDF(pc) (858KB)(919)       Save
Corn stalk was pretreated by four kinds of pretreatment methods, namely, dilute acid, dilute acid refining, neutral steam explosion and dilute acid steam explosion. The effects of pretreatment on enzymatic hydrolysis and yield of fermentable su-gars were investigated. The components of pretreated corn stalk, sugars in pre-hydrolyzate, carbohydrate and lignin degradation products in pre-hydrolyate were also analyzed. After 100 g corn stalk was pretreated by dilute acid, dilute acid refining, neutral steam explosion and dilute acid steam explosion followed by washing, the cellulose content -dropped from 37.17g to 33.96, 33.54, 32.63 and 32.88 g, respectively; the xylan content declined from 22.84 g to 2.77, 2.47, 3.56 and 2.05 g respectively and lignin content reduced to 17.63, 17.42, 16.90 and 17.25 g from 18.76 g, respectively. When dilute acid steam explosion pretreated corn stalk was treated by 20 FPIU/g cellulose cellulase and 3 IU/g cellulose β-glucosidase for 48 h as the substrate concentration was 100g/L, the hydrolysis yield of cellulose was 75.91 % (based on corn stover). The yield of fermentable sugars was 44.93 % (based on corn stover) as the corn stover was pretreated by dilute acid steam explosion and enzymatic hydrolysis.
Related Articles | Metrics
Preparation and Application for Kaempferol Molecularly-imprinted Polymers
YU Lan-zhe;QU Dan;YUN Yan-bin
   2011, 31 (4): 19-24.  
Abstract1293)      PDF(pc) (1189KB)(540)       Save
A molecularly-imprinted polymer(MIP) was prepared by bulk polymerization, using kaempferol as the template molecule, 4-vinyl pyridine as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker in the solvent system of CHCl 3-DMF(3∶1, volume ratio). The synthesized polymer, i.e.kaempferol-MIP, was analyzed by FT-IR and scanning electron microscopey(SEM). In addition, the adsorption properties and mechanism were studied as well. The experimental results showed that the kaempferol-MIP exhibited a favorable affinity for kaempferol. The Scatchard analysis reveals that there exists a class of homogenous recognition sites in kaempferol-MIP within the range of certain concentration. Apparent maximal combination amount ( Q max) and equilibrium dissociation constant ( K D) were calculated to be 3 938 μg/g and 9.074 mg/L, respectively. The result of selectivity study showed that the selectivity coefficient is 3.24 with respect to kaempferol-rutin system.
Related Articles | Metrics