Chemistry and Industry of Forest Products ›› 2020, Vol. 40 ›› Issue (2): 16-24.doi: 10.3969/j.issn.0253-2417.2020.02.002
Previous Articles Next Articles
Xiaojie BAI(),Xiuchun DENG,Zuyou ZHUO,Yandan CHEN*(
)
Received:
2019-08-13
Online:
2020-04-28
Published:
2020-04-27
Contact:
Yandan CHEN
E-mail:m18814665621@163.com;fjaucyd@163.com
CLC Number:
Xiaojie BAI,Xiuchun DENG,Zuyou ZHUO,Yandan CHEN. Recent Progress on Surface Modification and High Value-added Utilization of Kapok Fiber[J]. Chemistry and Industry of Forest Products, 2020, 40(2): 16-24.
1 | ZHENG Y A, WANG A Q.Kapok Fiber: Applications[M]//HAKEEM K, JAWAOD M, RASHID U.Biomass & Bioenergy.[S.l.]: Springer, 2014: 252-263. |
2 | 李会改, 楚久英, 张振方, 等. 木棉絮填料睡袋的成型设计及性能测试[J]. 上海纺织科技, 2018, 46 (12): 46- 48, 68. |
LI H G , CHU J Y , ZHANG Z F , et al. Molding design and performance of kapok-filled sleeping bag[J]. Shanghai Textile Science & Technology, 2018, 46 (12): 46- 48, 68. | |
3 | ZHENG Y A , WANG J T , ZHU Y F , et al. Research and application of kapok fiber as an absorbing material:A mini review[J]. Journal of Environmental Sciences, 2015, 27 (1): 21- 32. |
4 | 石煜, 沈兰萍, 阳智. 木棉纤维性能及其功能织物开发研究新进展[J]. 合成纤维, 2019, 48 (1): 42- 45. |
SHI Y , SHEN L P , YANG Z . New progress in the development of kapok fiber properties and its functional fabrics[J]. Synthetic Fiber in China, 2019, 48 (1): 42- 45. | |
5 | LI S Y , ZHANG H , ZANG C F . The study on properties of kapok nonwoven material[J]. Advanced Materials Research, 2012, 535/537, 1487- 1490. |
6 | ZHENG Y A, WANG A Q.Kapok Fiber: Structure and Properties[M]//HAKEEM K, JAWAOD M, RASHID U.Biomass & Bioenergy.[S.l.]: Springer, 2014: 101-110. |
7 | 张振方, 王梅珍, 林玲, 等. 木棉纤维基本性能研究[J]. 针织工业, 2015, (8): 25- 28. |
ZHANG Z F , WANG M Z , LIN L , et al. Study of basic properties of kapok fiber[J]. Knitting Industries, 2015, (8): 25- 28. | |
8 | JIANG T , DING Y , SHEN Y . Plasma modification of kapok fiber and its properties[J]. Advanced Materials Research, 2013, 821/822, 18- 22. |
9 | YANG Z L , YAN J J , WANG F M . Pore structure of kapok fiber[J]. Cellulose, 2018, 25 (6): 3219- 3227. |
10 | DONG T , WANG F M , XU G B . Sorption kinetics and mechanism of various oils into kapok assembly[J]. Marine Pollution Bulletin, 2015, 91 (1): 230- 237. |
11 | ZHANG X Y , FU W Y , DUAN C T , et al. Superhydrophobicity determines the buoyancy performance of kapok fiber aggregates[J]. Applied Surface Science, 2013, 266, 225- 229. |
12 | 楚久英, 廖师琴, 李会改. 木棉纤维性能及其应用进展[J]. 产业用纺, 2018, 36 (11): 6- 10. |
CHU J Y , LIAO S Q , LI H G . Performance and application progress of kapok fiber[J]. Technical Textiles, 2018, 36 (11): 6- 10. | |
13 | 张振方, 王梅珍, 林玲, 等. 木棉纤维及其絮料性能研究进展[J]. 纺织科技进展, 2015, (2): 7- 10. |
ZHANG Z F , WANG M Z , LIN L , et al. Research progress on the performance of kapok fiber and its wadding[J]. Progress in Textile Science & Technology, 2015, (2): 7- 10. | |
14 | ZHANG X Y , DUAN C T , ZHAO N , et al. Facile fabrication of large scale microtubes with a natural template-Kapok fiber[J]. Chinese Journal of Polymer Science, 2010, 28 (5): 841- 847. |
15 | ABDULLAH M A , RAHMAH A U , MAN Z . Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn.as a natural oil sorbent[J]. Journal of Hazardous Materials, 2010, 177 (1/2/3): 683- 691. |
16 | WANG J T , ZHENG Y A , WANG A Q . Effect of kapok fiber treated with various solvents on oil absorbency[J]. Industrial Crops and Products, 2012, 40, 178- 184. |
17 | LIM T T , HUANG X . Evaluation of hydrophobicity/oleophilicity of kapok and its performance in oily water filtration:Comparison of raw and solvent-treated fibers[J]. Industrial Crops & Products, 2007, 26 (2): 125- 134. |
18 | TYE Y Y , LEE K T , ABDULLAH W N W , et al. Potential of Ceiba pentandra (L.) Gaertn.(kapok fiber) as a resource for second generation bioethanol:Effect of various simple pretreatment methods on sugar production[J]. Bioresource Technology, 2012, 116, 536- 539. |
19 | LIU Y , WANG J T , ZHENG Y A , et al. Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology[J]. Chemical Engineering Journal, 2012, 184, 248- 255. |
20 | WANG J T , ZHENG Y A , WANG A Q . Superhydrophobic kapok fiber oil-absorbent:Preparation and high oil absorbency[J]. Chemical Engineering Journal, 2012, 213, 1- 7. |
21 | CHUNG B Y , CHO J Y , LEE M H , et al. Adsorption of heavy metal ions onto chemically oxidized Ceiba pentandra (L.) Gaertn.(kapok) fibers[J]. Journal of Applied Biological Chemistry, 2008, 51 (1): 28- 35. |
22 | 唐爱民, 胡婷婷, 苏霞. 利用原子力显微镜研究预处理对木棉纤维/CdS纳米复合材料形貌结构的影响[J]. 功能材料, 2012, 43 (24): 3437- 3441. |
TANG A M , HU T T , SU X . The influence of pretreatment on kapok fiber/CdS nanocompositesmorphology structure by AFM[J]. Journal of Functional Materials, 2012, 43 (24): 3437- 3441. | |
23 | MWAIKAMBO L Y , BISANDA E T N . The performance of cotton-kapok fabric-polyester composites[J]. Polymer Testing, 1999, 18 (3): 181- 198. |
24 | WANG J T , WANG A Q . Acetylated modification of kapok fiber and application for oil absorption[J]. Fibers and Polymers, 2013, 14 (11): 1834- 1840. |
25 | CHUNG B Y , HYEONG M H , AN B C , et al. Flame-resistant kapok fiber manufactured using gamma ray[J]. Radiation Physics and Chemistry, 2009, 78 (7/8): 513- 515. |
26 | 唐爱民, 王鑫, 陈港, 等. 天然木棉纤维/磁性纳米粒子原位复合反应特性研究[J]. 材料工程, 2008, (10): 80- 84. |
TANG A M , WANG X , CHEN G , et al. Study on characteristics of in-situ composition of nature kapok fibers/magnetic nano-particles[J]. Journal of Materials Engineering, 2008, (10): 80- 84. | |
27 | DONG T , XU G B , WANG F M . Adsorption and adhesiveness of kapok fiber to different oils[J]. Journal of Hazardous Materials, 2015, 296, 101- 111. |
28 | ALI N , EL-HARBAWI M , JABAL A A , et al. Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks:Oil removal suitability matrix[J]. Environmental Technology, 2012, 33 (4): 481- 486. |
29 | DONG T , CAO S B , XU G B . Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water[J]. Journal of Hazardous Materials, 2016, 305, 1- 7. |
30 | WANG J T , ZHENG Y A , WANG A Q . Investigation of acetylated kapok fibers on the sorption of oil in water[J]. Journal of Environmental Sciences, 2013, 25 (2): 246- 253. |
31 | 岳新霞, 宁晚娥, 蒋芳, 等. 木棉纤维改性及吸油性能研究[J]. 上海纺织科技, 2017, 45 (12): 57- 61. |
YUE X X , NING W E , JIANG F , et al. Modification and oil adsorption property of kapok fibers[J]. Shanghai Textile Science & Technology, 2017, 45 (12): 57- 61. | |
32 | WANG J T , ZHENG Y A , WANG A Q . Superhydrophobic kapok fiber oil-absorbent:Preparation and high oil absorbency[J]. Chemical Engineering Journal, 2012, 213, 1- 7. |
33 | ZHENG Y A , CAO E J , TU L X , et al. A comparative study for oil-absorbing performance of octadecyltrichlorosilane treated Calotropis gigantea fiber and kapok fiber[J]. Cellulose, 2017, 24 (2): 989- 1000. |
34 | WANG J T , ZHENG Y A , KANG Y R , et al. Investigation of oil sorption capability of PBMA/SiO2 coated kapok fiber[J]. Chemical Engineering Journal, 2013, 223, 632- 637. |
35 | WANG J , GENG G , LIU X , et al. Magnetically superhydrophobic kapok fiber for selective sorption and continuous separation of oil from water[J]. Chemical Engineering Research and Design, 2016, 115, 122- 130. |
36 | WANG J T , WANG W B , WANG A Q . Robustly superhydrophobic/superoleophilic kapok fiber with ZnO nanoneedles coating:Highly efficient separation of oil layer in water and capture of oil droplets in oil-in-water emulsions[J]. Industrial Crops & Products, 2017, 108, 303- 311. |
37 | KANG P H , JEUN J P , CHUNG B Y , et al. Preparation and characterization of glycidyl methacrylate (GMA) grafted kapok fiber by using radiation induced-grafting technique[J]. Journal of Industrial and Engineering Chemistry, 2007, 13 (6): 956- 958. |
38 | 王锦涛, 郑易安, 王爱勤. 木棉纤维接枝聚苯乙烯吸油材料的制备及性能[J]. 功能高分子学报, 2012, (1): 28- 33. |
WANG J T , ZHENG Y A , WANG A Q . Preparation and properties of kapok-g-polystyrene oil absorbent[J]. Journal of Functional Polymers, 2012, (1): 28- 33. | |
39 | WANG J T , ZHENG Y A , WANG A Q . Coated kapok fiber for removal of spilled oil[J]. Marine Pollution Bulletin, 2013, 69 (1/2): 91- 96. |
40 | THILAGAVATHI G , PRABA KARAN C , THENMOZHI R . Development and investigations of kapok fiber based needle punched nonwoven as eco-friendly oil sorbent[J]. Journal of Natural Fibers, 2020, 17 (1): 18- 27. |
41 | DONG T , WANG F M , XU G B . Sorption kinetics and mechanism of various oils into kapok assembly[J]. Marine Pollution Bulletin, 2015, 91 (1): 230- 237. |
42 | DONG T , WANG F M , XU G B . Theoretical and experimental study on the oil sorption behavior of kapok assemblies[J]. Industrial Crops and Products, 2014, 61, 325- 330. |
43 | DONG T , CAO S B , XU G B . Highly efficient and recyclable depth filtrating system using structured kapok filters for oil removal and recovery from wastewater[J]. Journal of Hazardous Materials, 2017, 321, 859- 867. |
44 | DONG T , CAO S B , XU G B . Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water[J]. Journal of Hazardous Materials, 2016, 305, 1- 7. |
45 | 王圣平, 周权, 周成冈, 等. 锂硫电池硫电极的研究现状[J]. 电池, 2010, 40 (4): 232- 235. |
WANG S P , ZHOU Q , ZHOU C G , et al. Research status quo of sulfur electrode for lithium/sulfur battery[J]. Battery Bimonthly, 2010, 40 (4): 232- 235. | |
46 | 杨果, 马壮, 杨绍斌, 等. 锂硫电池硫基碳正极材料的研究进展[J]. 化工进展, 2017, 36 (增刊1): 311- 318. |
YANG G , MA Z , YANG S B , et al. Research progress of sulfur-based carbon cathode materials in lithium-sulfur batteries[J]. Chemical Industry and Engineering Progress, 2017, 36 (S1): 311- 318. | |
47 | XI K , KIDAMBI P R , CHEN R J , et al. Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries[J]. Nanoscale, 2014, 6 (11): 5746- 5753. |
48 | TAO X Y , ZHANG J T , XIA Y , et al. Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li-S batteries[J]. Journal of Materials Chemistry A, 2014, 2 (7): 2290- 2296. |
49 | MU B , ZHANG W B , XU W B , et al. Hollowed-out tubular carbon@MnO2 hybrid composites with controlled morphology derived from kapok fibers for supercapacitor electrode materials[J]. Electrochimica Acta, 2015, 178, 709- 720. |
50 | LU X F , WANG A L , XU H , et al. High-performance supercapacitors based on MnO2 tube-in-tube arrays[J]. Journal of Materials Chemistry A, 2015, 3 (32): 16560- 16566. |
51 | ZHANG J , LIU F , CHENG J P , et al. Binary Nickel-cobalt oxides electrode materials for high-performance supercapacitors:Influence of its composition and porous nature[J]. ACS Applied Materials & Interfaces, 2015, 7 (32): 17630- 17640. |
52 | WU M S , ZHENG Z B , LAI Y S , et al. Nickel cobaltite nanograss grown around porous carbon nanotube-wrapped stainless steel wire mesh as a flexible electrode for high-performance supercapacitor application[J]. Electrochimica Acta, 2015, 182, 31- 38. |
53 | WANG Z L , ZHU Z L , QIU J H , et al. High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core-shell nanorods//specially reduced graphene oxide[J]. Journal of Materials Chemistry C, 2014, 2 (7): 1331- 1336. |
54 | BI Z H , KONG Q Q , CAO Y F , et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes:A review[J]. Journal of Materials Chemistry A, 2019, 7 (27): 16028- 16045. |
55 | WANG J R , WAN F , LÜ Q F , et al. Self-nitrogen-doped porous biochar derived from kapok(Ceiba insignis) fibers:Effect of pyrolysis temperature and high electrochemical performance[J]. Journal of Materials Science & Technology, 2018, 34 (10): 1959- 1968. |
56 | CAO Y F , XIE L J , SUN G H , et al. Hollow carbon microtubes from kapok fiber:Structural evolution and energy storage performance[J]. Sustainable Energy & Fuels, 2018, 2 (2): 455- 465. |
57 | XU W B , MU B , WANG A Q . Facile fabrication of well-defined microtubular carbonized kapok fiber/NiO composites as electrode material for supercapacitor[J]. Electrochimica Acta, 2016, 194, 84- 94. |
58 | XU W B , MU B , WANG A Q . Three-dimensional hollow microtubular carbonized kapok fiber/cobalt-nickel binary oxide composites for high-performance electrode materials of supercapacitors[J]. Electrochimica Acta, 2017, 224, 113- 124. |
59 | XU W B , MU B , WANG A Q . All-solid-state high-energy asymmetric supercapacitor based on natural tubular fibers[J]. Journal of Materials Science, 2018, 53 (16): 11659- 11670. |
60 | XIANG H F , WANG D , LIUA H C , et al. Investigation on sound absorption properties of kapok fibers[J]. Chinese Journal of Polymer Science, 2013, 31 (3): 521- 529. |
61 | LIU X T , LI L , YAN X , et al. Sound-absorbing properties of kapok fiber nonwoven composite at low-frequency[J]. Advanced Materials Research, 2013, 821/822, 329- 332. |
62 | LIU X T , YAN X , LI L , et al. Sound-absorption properties of kapok fiber nonwoven fabrics at low frequency[J]. Journal of Natural Fibers, 2015, 12 (4): 311- 322. |
63 | GANESAN P , KARTHIK T . Development of acoustic nonwoven materials from kapok and milkweed fibres[J]. The Journal of The Textile Institute, 2016, 107 (4): 477- 482. |
64 | KAAMIN M, MAHIR N S M, KADIR A A, et al.Sound absorption study on acoustic panel from kapok fiber and egg tray[J/OL]//AIP Conference Proceedings, 2017, 1901: 130012-1-130012-7[2019-01-13]. http://doi.org/10.1063/1.5010572. |
[1] | Hongliang MA,Jian CHEN,Jian JIAO,Yongjun DENG,Zhenwu KONG,Guigan FANG. Preparation and Characterization of Long-chain Silanes Modified Poplar Wood Fiber [J]. Chemistry and Industry of Forest Products, 2019, 39(3): 25-33. |
[2] | MA Hongliang, CHEN Jian, JIAO Jian, DENG Yongjun, KONG Zhenwu, FANG Guigan. Preparation and Characterization of Organosiloxane Modified Poplar Wood Fiber [J]. Chemistry and Industry of Forest Products, 2018, 38(6): 20-26. |
[3] | ZUO Songlin, ZHANG Jie, LIU Junli, SUN Kang. Vacuum Desorption of Volatile Organic Compounds from Activated Carbons [J]. Chemistry and Industry of Forest Products, 2017, 37(6): 19-27. |
[4] | CHEN Jian;KONG Zhen-wu;JIAO Jian;FANG Gui-gan;WU Guo-min;HUO Shu-ping. Preparation and Characterization of Graft Modified Poplar Wood Powder by 4,4'-Methylenebis (Phenyl Isocyanate)/γ-Aminopropyltriethoxysilane [J]. , 2013, 33(1): 1-7. |
[5] | CHEN Qin-hui;BAI Wei-bin;XU Yan-lian;LIN Jin-huo. Chemical Structure and Reaction Scheme of Modified Bamboo Powder with Silane Coupling Agent [J]. , 2012, 32(6): 27-31. |
[6] | CHEN Jian;KONG Zhen-wu;JIAO Jian;FANG Gui-gan;WU Guo-min;HUO Shu-ping. Preparation and Characterization of Graft-modified Poplar Wood Powder by Methyl Eleostearate Maleic Anhydride Adduct [J]. , 2011, 31(5): 25-31. |
[7] | WANG Qiang;LI Li;TIAN Hua;LIU Rui-ting;ZHANG Zheng-fang;TANG Jun. Influence of the Modified Activated Carbon on Adsorption Heat of Methane by Inverse Gas Chromatography [J]. , 2011, 31(2): 101-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||