Welcome to Chemistry and Industry of Forest Products,

Chemistry and Industry of Forest Products ›› 2023, Vol. 43 ›› Issue (3): 25-33.doi: 10.3969/j.issn.0253-2417.2023.03.004

Previous Articles     Next Articles

Preparation and Strain Induction Characterization of High Strength Cellulose Dual-network Conductive Hydrogel

Junyu JIAN1,2, Yitong XIE1,2, Shishuai GAO1,2, Daihui ZHANG1,2,*(), Fuxiang CHU1,2   

  1. 1. Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing 210042, China
    2. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
  • Received:2022-03-18 Online:2023-06-28 Published:2023-06-27
  • Contact: Daihui ZHANG E-mail:zdh0824@163.com

Abstract:

The primary network was formed by using ethanol vapor to induce the microcrystalline cellulose(MCC)-sodium hydroxide/urea solution. The acrylic acid(AA) and acrylamide(AM) were chosen as raw materials, together with N, N′-methylene bisacrylamide(MBAA) as a cross-linking agent, and ammonium persulfate(APS) as an initiator to fabricate the secondary network. Then, ferric chloride was introduced by soaking method to construct a multi-crosslinked cellulose/polyacrylamide-polyacrylic acid/ iron ion hydrogel(C/PAMAA/Fe3+). The mechanical and electrochemical properties of the hydrogel were investigated. The results showed that the coordination bond formed by Fe3+ and —COO- acted as a sacrificial fracture during deformation, which contributed to the improvement of the mechanical properties of C/PAMAA/Fe3+. The hydrogel showed the toughness of 17.13 MJ/m3 and tensile strength of 4.59 MPa, respectively. Moreover, the results of the cyclic tensile loading-unloading test showed that the energy dissipation efficiency of the C/PAMAA/Fe3+ hydrogel increased with the increase of Fe3+ concentration, and the energy dissipation rate increased from 56.86% to 75.17%. Besides, the elastic recovery after the second cyclic loading-unloading could reach around 85.0%. As the increasing concentration of Fe3+, the ionic conductivity of the C/PAMAA/Fe3+ hydrogel increased, and a Fe3+ concentration of 0.2 mol/L was 1.03 S/m. The C/PAMAA/Fe3+ hydrogel was assembled as a strain sensor, and the sensitivity was 4.0. The resistance change results of the stretching increment and stretching cycle showed that the C/PAMAA/Fe3+ hydrogel strain sensor had good stability. The results of real-time monitoring of joint activities showed that the sensor had a stable strain response.

Key words: ion coordination, cellulose hydrogel, dual-network, strain sensor

CLC Number: